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Vienna Summer of Logic Preface

In the summer of 2014, Vienna hosted the largest scientific conference in the
history of logic. The Vienna Summer of Logic (VSL, http://vsl2014.at) consisted of
twelve large conferences and 82 workshops, attracting more than 2000 researchers
from all over the world. This unique event was organized by the Kurt Gödel Society
at Vienna University of Technology from July 9 to 24, 2014, under the auspices of
the Federal President of the Republic of Austria, Dr. Heinz Fischer.

The conferences and workshops dealt with the main theme, logic, from three
important angles: logic in computer science, mathematical logic, and logic in artificial
intelligence. They naturally gave rise to respective streams gathering the following
meetings:

Logic in Computer Science / Federated Logic Conference (FLoC)

• 26th International Conference on Computer Aided Verification (CAV)

• 27th IEEE Computer Security Foundations Symposium (CSF)

• 30th International Conference on Logic Programming (ICLP)

• 7th International Joint Conference on Automated Reasoning (IJCAR)

• 5th Conference on Interactive Theorem Proving (ITP)

• Joint meeting of the 23rd EACSL Annual Conference on Computer Science
Logic (CSL) and the 29th ACM/IEEE Symposium on Logic in Computer
Science (LICS)

• 25th International Conference on Rewriting Techniques and Applications (RTA)
joint with the 12th International Conference on Typed Lambda Calculi and
Applications (TLCA)

• 17th International Conference on Theory and Applications of Satisfiability
Testing (SAT)

• 76 FLoC Workshops

• FLoC Olympic Games (System Competitions)

Mathematical Logic

• Logic Colloquium 2014 (LC)

• Logic, Algebra and Truth Degrees 2014 (LATD)

• Compositional Meaning in Logic (GeTFun 2.0)

• The Infinity Workshop (INFINITY)

• Workshop on Logic and Games (LG)

• Kurt Gödel Fellowship Competition
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Logic in Artificial Intelligence

• 14th International Conference on Principles of Knowledge Representation and
Reasoning (KR)

• 27th International Workshop on Description Logics (DL)

• 15th International Workshop on Non-Monotonic Reasoning (NMR)

• 6th International Workshop on Knowledge Representation for Health Care
2014 (KR4HC)

The VSL keynote talks which were directed to all participants were given by
Franz Baader (Technische Universität Dresden), Edmund Clarke (Carnegie Mellon
University), Christos Papadimitriou (University of California, Berkeley) and Alex
Wilkie (University of Manchester); Dana Scott (Carnegie Mellon University) spoke
in the opening session. Since the Vienna Summer of Logic contained more than a
hundred invited talks, it is infeasible to list them here.

The program of the Vienna Summer of Logic was very rich, including not only
scientific talks, poster sessions and panels, but also two distinctive events. One was
the award ceremony of the Kurt Gödel Research Prize Fellowship Competition, in
which the Kurt Gödel Society awarded three research fellowship prizes endowed with
100.000 Euro each to the winners. This was the third edition of the competition,
themed Logical Mind: Connecting Foundations and Technology this year.

The other distinctive event were the 1st FLoC Olympic Games hosted by the
Federated Logic Conference (FLoC) 2014. Intended as a new FLoC element, the
Games brought together 12 established logic solver competitions by different research
communities. In addition to the competitions, the Olympic Games facilitated the
exchange of expertise between communities, and increased the visibility and impact
of state-of-the-art solver technology. The winners in the competition categories were
honored with Kurt Gödel medals at the FLoC Olympic Games award ceremonies.

Organizing an event like the Vienna Summer of Logic has been a challenge. We
are indebted to numerous people whose enormous efforts were essential in making
this vision become reality. With so many colleagues and friends working with us, we
are unable to list them individually here. Nevertheless, as representatives of the three
streams of VSL, we would like to particularly express our gratitude to all people who
have helped to make this event a success: the sponsors and the honorary committee;
the organization committee and the local organizers; the conference and workshop
chairs and program committee members; the reviewers and authors; and of course
all speakers and participants of the many conferences, workshops and competitions.

The Vienna Summer of Logic continues a great legacy of scientific thought that
started in Ancient Greece and flourished in the city of Gödel, Wittgenstein and the
Vienna Circle. The heroes of our intellectual past shaped the scientific world-view
and changed our understanding of science. Owing to their achievements, logic has
permeated a wide range of disciplines, including computer science, mathematics,
artificial intelligence, philosophy, linguistics, and many more. Logic is everywhere –
or in the language of Aristotle, πάντα πλήρη λογικῆς τέχνης.

Vienna, July 2014

Matthias Baaz, Thomas Eiter, Helmut Veith
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Editor’s Preface

This volume contains the informal proceedings of the 14th International Workshop
on Termination, to be held on 17–18 July 2014 in Vienna, Austria.

The International Workshop on Termination (WST) brings together, in an
informal setting, researchers interested in all aspects of termination, whether this
interest be practical or theoretical, primary or derived. The workshop also provides
a ground for cross-fertilisation of ideas from term rewriting and from the different
programming language communities.

WST 2014 continues the tradition of the successful workshops held in St. Andrews
(1993), La Bresse (1995), Ede (1997), Dagstuhl (1999), Utrecht (2001), Valencia
(2003), Aachen (2004), Seattle (2006), Paris (2007), Leipzig (2009), Edinburgh (2010),
Obergurgl (2012), and Bertinoro (2013).

As in 2006 and 2010, also WST 2014 is part of the Federated Logic Conference,
which in 2014 is part of an even larger event, the Vienna Summer of Logic 2014. In
particular, WST is affiliated with the following FLoC conferences:

• 26th International Conference on Computer Aided Verification (CAV)

• 7th International Joint Conference on Automated Reasoning (IJCAR)

• 25th International Conference on Rewriting Techniques and Applications (RTA)
joint with the 12th International Conference on Typed Lambda Calculi and
Applications (TLCA)

The 14th Workshop on Termination features 19 regular extended abstracts,
contained in this volume, and an invited talk by Jasmin Fisher on Termination of
Biological Programs.

I would like to thank everyone who helped to prepare and run the workshop: the
participants, the members of the programme committee, and the local organisers.

London, June 2014 Carsten Fuhs

Programme Committee

Elvira Albert Complutense University of Madrid
Amir Ben-Amram Tel-Aviv Academic College
Byron Cook Microsoft Research and University College London
Carsten Fuhs (chair) University College London
Jürgen Giesl RWTH Aachen
Laure Gonnord University of Lyon
Albert Rubio Universitat Politècnica de Catalunya
Peter Schneider-Kamp University of Southern Denmark
Christian Sternagel University of Innsbruck
Thomas Stroeder RWTH Aachen
Johannes Waldmann HTWK Leipzig
Harald Zankl University of Innsbruck
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Type Introduction for Runtime Complexity
Analysis∗

Martin Avanzini1 and Bertram Felgenhauer1

1 Institute of Computer Science,
University of Innsbruck, Austria
{martin.avanzini,bertram.felgenhauer}@uibk.ac.at

1 Introduction

Runtime complexity analysis is a natural refinement of termination analysis. Instead of
asking whether all reductions yield a result eventually, we are interested in how long the
reduction process takes. In order to measure the runtime complexity of a term rewrite system
(TRS for short) it is natural to look at the maximal length of derivation sequences, a program
first suggested by Hofbauer and Lautemann [5]. The resulting notion of complexity is called
derivational complexity. Hirokawa and Moser [4] introduced a variation, called runtime
complexity, that only takes basic or constructor-based terms as start terms into account. This
notion of complexity accurately express the complexity of a program through the runtime
complexity of a TRS, and constitutes an invariant cost model for rewrite systems [2].

Advanced techniques developed in the context of program complexity analysis essentially
rely on sort information. For instance Hoffmann et al. [6] define an elegant and powerful
calculus to infer various complexity properties of resource aware ML programs, essentially
sorted rewrite systems, automatically. It is inherently difficult to transfer these techniques
into an untyped setting.

In this note we show that the runtime complexity function of a sorted rewrite system
R coincides with the runtime complexity function of the unsorted rewrite system Θ(R),
obtained by forgetting sort information. Hence our result states that sort-introduction, a
process that is easily carried out via unification, is sound for runtime complexity analysis.
Our result thus provides the foundation for exploiting sort information in analysis of TRSs.

Our main research is tightly related to the research on persistent properties [9] of rewrite
systems, e.g. [1, 7]. Here a property on rewrite systems is called persistent if it holds for the
sorted TRS R if and only if it holds on the unsorted variant Θ(R). As trivial corollary to
our main result we obtain that innermost termination is persistent, a result that has been
previously established in [3].

2 Preliminaries

We assume familiarity with rewriting [8]. We denote by V a countable infinite set of variables,
F denotes a signature and T (F ,V) denotes the set of terms with symbols in F and variables
in V. We denote by Var(t) the set of variables occurring in t. Let R be a TRS. Roots of
left-hand sides in R are called defined, symbols that are not defined are called constructors
and are collected in CR. Terms t = f(t1, . . . , tk) with ti ∈ T (CR,V) for all i = 1, . . . , k are
called basic. The rewrite relation of a term rewrite system R is denoted by −→R, by i−→R we
denote the innermost rewrite relation of R. The runtime complexity (function) rcR : N→ N

∗ This work is supported by FWF (Austrian Science Fund) projects J3563 and P22467.
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of R is defined by

rcR(n) := max{` | ∃t0, . . . , t`. t0 −→R · · · −→R t` and t0 is a basic term of size up to n} .

Note that rcR is well-defined when R is terminating. The innermost runtime complexity
(function) rciR of R is defined analogously, considering innermost reductions only.

To simplify notations, we employ the notion of S-sorted rewriting of Aoto and Toyama
[1]. Let S be a set of sorts. Sorts are denoted by α, β, . . . , possibly followed by subscripts.
A sort-attachment is a mapping τ from V ∪ F to S∗ such that τ(x) ∈ S for x ∈ V and
τ(x) ∈ Sk+1 for every k-ary f ∈ F . In the latter case we write f :α1, . . . , αk → α instead
of τ(f) = α1, . . . , αk, α. Without loss of generality, we assume that for each α ∈ S the sets
Vα := {x | τ(x) = α} are countable infinite. The sort sort(t) of a term t is defined by the
root symbol only. We set sort(x) := τ(x) for variables x and sort(f(t1, . . . , tk)) = α where
f :α1, . . . , αk → α.

A term t is well-sorted (under τ) with sort α if t :α is derivable by the following rules:
(i) t = x and τ(x) = α, or (ii) t = f(t1, . . . , tk), f :α1, . . . , αk → α and ti :αi (i = 1, . . . , k).
We denote by T (F ,V)τ ⊆ T (F ,V) the set of all term which are well-sorted under τ .

An S-sorted TRS R is given by an unsorted TRS Θ(R) and sort-attachment τ such that
every rule l → r ∈ Θ(R), l :α and r :α holds for some sort α ∈ S. In the following, R
always denotes an S-sorted TRS. The rewrite relation −→R of an S-sorted TRS is given by
the restriction of −→Θ(R) to well-sorted terms T (F ,V)τ . We extend the notion of runtime
complexity function in the obvious way to S-sorted TRSs. A property P of TRSs is called
persistent if for each rewrite system R, R has property P if and only if Θ(R) has property
P . Notice that our notion of persistency coincides with the standard notion formulated on
many-sorted TRSs, see [1].

3 Bounded Runtime Complexity is a Persistent Property of TRSs

In the following we show that the bounded runtime complexity problem, which asks for a
TRS R and function f : N → N whether rcR(n) 6 f(n) for all n ∈ N holds, is persistent.
We even show a stronger property, viz, rcR(n) = rcΘ(R)(n) for all n ∈ N. It is clear that
every R-derivation is also an Θ(R)-derivation, hence rcR(n) 6 rcΘ(R)(n) holds trivially.
The converse is however not true in general. Consider the sorted TRS R1 consisting of rules

f(0, 1, x)→ f(x, x, x) g(y, z)→ y g(y, z)→ z ,

and sort-attachment so that 0, 1 :α, f :α, α, α → α and g :β, β → β. Notice that R1 is
terminating, since sorting excludes the formation of terms involving both f and g symbols.
On the other hand, the TRS Θ(R1) gives rise to a cycle

t := f(0, 1, g(0, 1)) −→Θ(R1) f(g(0, 1), g(0, 1), g(0, 1)) −→Θ(R1) f(0, g(0, 1), g(0, 1)) −→Θ(R1) t ,

and is thus not terminating. The TRS R1 is the prototypical example that shows that
termination is not persistent, it is however not a counterexample to our claim. The notion
of runtime complexity considers only basic, i.e. argument normalised terms. Indeed, the
runtime complexity function of the sorted TRS R1 and its unsorted version Θ(R1) coincide.

Our central observation is that in a Θ(R)-derivation D starting from argument normal-
ised term t, subterms that lead to a sort conflict (called aliens of t below) do not contribute
to the derivation D itself. Although the (normalised) aliens might get duplicated or erased,
the sorting condition on R ensures that aliens never contribute to a pattern which triggers
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the application of a rule. This suggests that such aliens in t can be replaced by fresh vari-
ables so that the resulting term s is well-sorted. Although some care has to be taken in the
assignment of variables to aliens for non-left-linear systems, the derivation D of t can be
simulated step-wise by a R-derivation starting from the modified term s.

Fix a set of sorts S and an S-sorted TRS R. To define sorted contexts, we assume
the presence of fresh constants 2α, the holes, for each sort α ∈ S. We extend the type
assignment τ underlying R so that τ(2α) = α. A multi-holed context C[2α1 , . . . ,2αn

] is a
sorted term that contains each hole 2αi (i = 1, . . . , n) exactly once. With C[t1, . . . , tn] we
denote the term obtained by replacing holes αi with ti in C[2α1 , . . . ,2αn

].

I Definition 3.1. We write s = CJs1, . . . , snK for the unique decomposition s = C[s1, . . . , sn]
into a well-sorted context C[2α1 , . . . ,2αn

] and terms si with and sort(si) 6= αi for every
i = 1, . . . , n. The subterms s1, . . . , sn of s are called the aliens of s. The set of all aliens
{s1, . . . , sn} in s is denoted by alien(s).

Note that when s is well-sorted, the context C degenerates to s.

I Definition 3.2. Let s be a term. Consider a family γ = (γα : T6=α → Vα)α∈S of bijective
mappings from terms T6=α ⊆ {t ∈ T (F ,V) | sort(t) 6= α} to variables Vα ⊆ Vα. We define
the domain and range of γ by dom(γ) := ∪α∈ST6=α and range(γ) := ∪α∈SVα respectively.
Then γ is called an alien replacement for s if alien(s) ⊆ dom(γ) and range(γ) ∩ Var(s) = ∅.
We denote by γ̄ the inverse of γ: γ̄(x) := t where γsort(x)(t) = x for all x ∈ range(γ).

We define s mγ t if s = CJs1, . . . , snK for context C[2α1 , . . . ,2αn
], γ is an alien replace-

ment for s and t = C[γα1(s1), . . . , γαn(sn)] is well-sorted.

Notice that to each term s = CJs1, . . . , snK we can associate an alien replacement γ and term
t such that s mγ t holds: Start from a well-sorted term C[x1, . . . , xn] for pairwise disjoint
and fresh variables of appropriate sort. Identify variables xi and xj (i, j ∈ {1, . . . , n}) when
sort(xi) = sort(xj) and si = sj . The fixpoint of this construction yields the well-sorted term
t := C[y1, . . . , yn]. The family γ = (γα)α∈S , defined by γsort(xi)(yi) := si for i = 1, . . . , n, is
an alien replacement where by construction s mγ t holds.

Consider s mγ t. By the conditions on range(γ) it follows that t matches s with sub-
stitution γ̄, i.e. s = tγ̄. Provided γ is an alien replacement, we can also state the inverse
correspondence.

I Lemma 3.3. Let γ denote an alien replacement for a term s. Then s mγ t if and only if
s = tγ̄ and t is well-sorted.

The following lemma confirms that t is a maximal well-sorted pattern that matches s.

I Lemma 3.4. Suppose s mγ t holds, and let u be a well-sorted term with Var(u)∩range(γ) =
∅. If u matches s then u matches also t.

Proof. Let σ be a substitution with s = uσ. Without loss of generality, we suppose
dom(σ) ⊆ Var(u). Observe that since u is well-sorted, aliens of s occur only in the
substitution part. We define the substitution σγ as follows, for all x ∈ dom(σ): sup-
pose sort(x) 6= sort(σ(x)), thus σ(x) ∈ alien(s) and γsort(x)(s) is well-defined. Then we
set σγ(x) := γsort(x)(σ(x)). Otherwise, suppose σ(x) = CxJs1, . . . , smK for some non-
empty context Cx[2α1 , . . . ,2αm

] and aliens {s1, . . . , sm} ⊆ alien(s). Then we set σγ(x) :=
Cx[γα1(s1), . . . , γα1(sm)].

By definition of σγ , σγ(x)γ̄ = σ(x) for x ∈ dom(σ). By the variable condition on u,
we have (uσγ)γ̄ = s. Note that uσγ is by construction well-sorted, Lemma 3.3 thus gives
s mγ uσγ . By definition of mγ we see that s mγ uσγ and s mγ t implies uσγ = t. J

3



The following lemma provides our central simulation result. Since we consider deriva-
tions from argument normalised terms only, it suffices to consider only outer steps in the
simulation.

I Definition 3.5. A rewrite step s −→Θ(R) t is called inner if it takes place in one of the
aliens of s. The step s −→Θ(R) t is called outer if it is not an inner rewrite step.

I Lemma 3.6. Suppose s1 mγ t1 holds for an alien replacement γ with range(γ) disjoint
from the set of variables occurring in R.

1) If s1 −→Θ(R) s2 is an outer step then t1 −→R t2 for some term t2 with either (i) s2 mγ t2
or (ii) s2 ∈ alien(s1) with t2 = γα(s2) for some α ∈ S.

2) If s1
i−→Θ(R) s2 is an outer step then t1 i−→R t2 for some term t2 with either (i) s2 mγ t2

or (ii) s2 ∈ alien(s1) and t2 = γα(s2) for some α ∈ S.

Proof. We consider Proposition 1 first. Suppose s1 mγ t1 for γ as above. Consider an outer
rewrite step s1 −→Θ(R) s2. The proof is by induction on the rewrite context.

In the base case, s1 = lσ and s2 = rσ for some substitution σ and rewrite rule l→ r ∈ R.
By Lemma 3.4 we obtain a substitution σγ such that t1 = lσγ −→R rσγ . We verify that
either condition (i) or (ii) holds for t2 = rσγ .

Reconsider the substitution σγ constructed in Lemma 3.4. Suppose first that the applied
rewrite rule is collapsing, i.e. r ∈ Var(l). We distinguish the two cases in construction
of σγ . In the first case, rσγ = γsort(r)(rσ) with rσ ∈ alien(s1), i.e. (ii) holds. In the
second case rσγ = CxJu1, . . . , umK for some non-empty context Cx[2α1 , . . . ,2αm ] and aliens
{u1, . . . , um} ⊆ alien(s1). This yields alien(rσ) ⊆ alien(lσ), as moreover Var(rσ) ⊆ Var(lσ)
we conclude that γ is also an alien replacement for rσ. As the side conditions on range(γ)
gives (rσγ)γ̄ = rσ, we conclude rσ mγ rσγ by Lemma 3.3.

Now suppose that the applied rewrite rule is non-collapsing. Since l → r is well-sorted,
any alien in rσ occurs in the substitution, and hence is an alien of lσ. Hence again γ is an
alien replacement for rσ, since (rσγ)γ̄ = rσ we obtain rσ mγ rσγ using Lemma 3.3. This
finishes the base case.

For the inductive step, consider an outer rewrite step

s1 = f(u1, . . . , ui, . . . , uk) −→Θ(R) f(u1, . . . , vi, . . . , uk) = s2 ,

with ui −→Θ(R) vi outer. Using s1 mγ t1, Lemma 3.3 gives t1 = f(u′1, . . . , u′i, . . . , u′k) with
ui = u′iγ̄ for all i = 1, . . . , k. Hence by induction hypothesis, u′i −→R v′i for some well-
sorted term v′i with either vi mγ v′i or v′i = γα(vi) for vi ∈ alien(ui) and α ∈ S. Set
t2 := f(u′1, . . . , v′i, . . . , u′k) and thus t1 −→R t2. If vi mγ v′i holds then s2 mγ t2 follows by
applying Lemma 3.3 immediately. Hence suppose v′i = γα(vi). Since t2 is well-sorted and
sort(vi) 6= sort(γα(vi)) by definition, it follows that vi is an alien in s2. Again we conclude
s2 = t2γ̄ and thus s2 mγ t2 by Lemma 3.3. We conclude Proposition 1.

For Proposition 2, observe that if lσ −→Θ(R) rσ is an innermost step, i.e lσ is argument
normalised, then so is lσγ and hence lσγ −→R rσγ is an innermost rewrite step. Proposition 2
follows then by reasoning identical to above. J

I Lemma 3.7. If s1 −→Θ(R) s2 is outer, then either alien(s2) ⊆ alien(s1) or s2 ∈ alien(s1).

Proof. Consider an outer step s1 −→Θ(R) s2, and let t1 be such that s1 mγ t1 holds. Then by
Lemma 3.6, either s2 mγ t2 for some term t2 or s2 ∈ alien(s1). In the former case, s2 mγ t2
witnesses that aliens of s2 occur as aliens in s1, in the latter case we conclude directly. J
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I Theorem 3.8. Let s be a term such that all aliens in s are in Θ(R) normal-form. Then
any (innermost) Θ(R)-derivation of s is simulated step-wise by an (innermost) R-derivation
starting from some t with s mγ t.

Proof. Consider a derivation D : s = s0 −→Θ(R) s1 −→Θ(R) s2 −→Θ(R) · · · . Using Lemma 3.7,
a standard induction shows that alien(si) ⊆ alien(s) for all but possibly the last term
in D, and that the steps si −→Θ(R) si+1 are outer. We conclude the by Lemma 3.6(1)
(Lemma 3.6(2) respectively). J

Any basic term s satisfies trivially that aliens of s are in Θ(R) normal-form. The
above theorem thus shows that the dh(s,−→Θ(R)) 6 dh(s′,−→R), whenever s is basic. Since
s mγ s′ implies that |s| > |s′| it follows that rcΘ(R)(n) 6 rcR(n). By identical reasoning,
rciΘ(R)(n) 6 rciR(n). Thus we obtain the following corollary.

I Corollary 3.9. The (innermost) runtime complexity functions of R and Θ(R) coincide.
In particular, the bounded (innermost) runtime complexity problem is persistent.

Observe that if a TRS R is innermost non-terminating, then there exists a minimal non-
terminating term s = f(s1, . . . , sn) in the sense that all arguments are in normal-form. In
particular, the aliens of s are normalised. We thus re-obtain the following result from [3].

I Corollary 3.10. Innermost termination is a persistent property.

4 Conclusion

In this abstract we have shown that sort-introduction is sound for runtime complexity ana-
lysis. We considered the most simple form of sorted rewriting. It is expected that our result
can be extended to more general forms, allowing for instance polymorphism or ordered sorts.
Such extensions are subject to future research. To which extent sort information can be
exploited in runtime complexity analysis is also subject to further research.
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Abstract
We discuss design choices for SAT-encoding constraints for termination orders based on semantic
labelling and unlabelling, linear interpretations, recursive path orders with argument filters,
within the dependency pairs framework.

We specify constraints in a high-level Haskell-like language, and translate to SAT fully auto-
matically by the CO4 compiler. That way, constraints can be combined easily.

This allows to write a single constraint for find a model, and a sequence of ordering constraints
for the labelled system, such that at least one original rule can be removed completely. Reliability
is achieved via certification of generated proofs.

The size of the resulting propositional logic formulas can be reduced by strengthening the
constraints. We discuss an encoding of finite maps via patterns.

1 Introduction

Termination of a (rewrite) relation → can be shown by embedding → in a well-founded
order >. Such an order can be given syntactically, by comparing the shape of terms, and
occurences of symbols, as it happens in recursive path orders. Another option is to define
the order semantically, where each term is assigned an element of a well-founded algebra,
by giving interpretations of symbols. For the domain of such an algebra, we can use, e.g.,
numbers, vectors, matrices. Then there are methods for constructing a well-founded order
by combination of others, for example, using the lexicographic product. We also have
methods that transform a termination problem into another. Semantic labelling uses a
finite algebra that is a model for the rewrite relation, to assign labels to function symbols,
thereby increasing the signature, allowing a more fine-grained analysis of the transformed
system. The dependency pairs transformation also transforms a rewrite system, so that
sequences of “function calls” can be analyzed.

When we write a program to prove termination automatically, we prescribe a certain
termination proof method, and the task of the program (the “prover”) is to fill in all the
parameters. E.g., if we want to use interpretations by linear functions, then suitable coeffi-
cients of such functions must be determined. If we want to use a recursive path order, then
a suitable precedence of symbols is needed. In each case, suitability can be described by a
formula in predicate logic, which we call a “termination (ordering) constraint”. Thus, the
termination prover is actually a “solver” of constraints.

The present paper is not about new methods of proving termination, but about the prag-
matics of writing down termination constraints. As with all source code, one goal is efficiency
of execution, and another goal is efficiency of expression, leading to readability and maintain-
ability. We advocate the use of our high-level declarative constraint programming language
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2 Automated SAT Encoding for Termination Proofs with Semantic Labelling

CO4, that comes with a compiler that targets propositional satisfiabiliy (SAT).
SAT encoding is a successful method of solving finite domain constraints. Some ordering

constraints have finite domain by definition (a finite model, a precedence for a finite signa-
ture), others do not, e.g., because they involve numbers. SAT encoding can still be used, by
restricting to some finite subset, e.g., numbers of certain bit width.

The current state of SAT encoding (for termination) can be described as: it is successful
(several successful termination provers use it) but it is also laborious. This is mainly due to
explicit manipulation of propositional variables, corresponding to manual assignments from
identifiers to memory locations in low-level (assembly) programs.

This increases the work in encoding combined constraints. E.g., argument filtering and
path order comparison are handled at the same time, while they are conceptually independ-
ent. A filter π denotes a mapping Fπ from terms to terms (that removes some nodes and
subterms). Then, mapped terms are compared w.r.t. a path order: Fπ(s) >PO Fπ(t). In
the source code of our termination prover, this is literally expressed as the Haskell expression

case order of
FilterAndPrec f p ->

lpo p (filterArgumentsDPTerm f lhs) (filterArgumentsDPTerm f rhs)

In contrast, the encoding described in [5] combines these steps, so that the encoding of Fπ
is “fused” into the encoding of the path order, realizing a relation >πPO on terms.

We implement the following constraint for termination proofs that use semantic labelling
[11], path orders and linear interpretations in the context of the dependency pairs framework
[1]. The known input is a DP problem (set of (dependency) pairs and set of rewrite rules).
The unknown is a pair of an interpretation into a finite domain, and a termination order
(on the labelled signature), such that the interpretation is a model for the rewrite rules; all
labelled pairs and rules are weakly compatible with the order, and for at least one pair, all
its labelled versions are strictly compatible with the order.

The order is a lexicographic combination of basic orders, where a basic order is either a
recursive path order with argument filter, or built from a linear interpretation.

That means our constraint can describe a proof step where we first apply semantic
labelling, then remove a number of labelled pairs by using several orders in succession (e.g.,
first, a linear interpretation, then a path order, or path orders with different argument
filters), where at each step, we recompute usable rules, and finally unlabel. Proofs are
certified by CeTA [9].

The source code of our termination prover (and the SAT compiler CO4 [4]) is available
at https://github.com/apunktbau/co4

The present paper builds on [3]. New contributions are: extension from string rewriting
to term rewriting, applying the dependency pairs framework, and certifiable proofs.

2 Structured Finite Domain Constraints and their SAT Encoding

We briefly review the concepts of constraint programming with CO4. A parametric con-
straint is given as a function c :: P -> U -> Bool, written in a subset of Haskell, where P
is a domain of parameters, and U is the domain of unknowns. The constraint c is compiled
to a function cc :: P -> CNF such that cc p gives a propositional logic formula f in con-
junctive normal form such that from a satisfying assignment of f, an object u :: U can be
reconstructed with c p u == True.

CO4 handles algebraic data types (data), and case distinctions by pattern matching. A
set of unknown objects of an algebraic data type is represented as a tree, where each node
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contains propositional variables. Each assignment determines a (binary) number, which in
turn determines the constructor in this node. Pattern match on the constructor is realized by
compiling all branches, and adding selector functions. When merging results from different
branches of a case distinction, the corresponding trees are overlapped. This allows to handle
finite domain constraints in Haskell notation. For infinite types (lists, trees), we can specifiy
finite subsets by restricted recursion. While the core language of CO4 is first-order, we allow
higher order functions and remove them by specialization.

In our application, the main constraint is c :: DPProblem -> Proof -> Bool, where
c d p == True if p proves that at least one pair can be removed from the DP problem d.
We use these types:

data Proof = Proof (Model Symbol) [ UsableOrder (Symbol,Label) ]
type UsableOrder key = (UsableSymbol key, TerminationOrder key)
type UsableSymbol key = Map key Bool

In particular, a Proof object consists of a model m, and a list [(u1, o1), . . . , (uk, ok)]. Here,
oi is an order, and ui describes an over-approximation of the symbols that are usable w.r.t.
the dependency pairs that remain after removing those that are decreasing w.r.t. the lex-
icographic product of o1 to oi−1. For orders, we use

data TerminationOrder key = FilterAndPrec (ArgFilter key) (Precedence key)
| LinearInt (LinearInterpretation key)

data Index = This | Next Index
data Filter = Selection [ Index ] | Projection Index
type ArgFilter key = Map key Filter
data Precedence key = EmptyPrecedence | Precedence (Map key Nat)

3 Encoding of Finite Maps with Patterns

We discuss in more detail the cost of SAT-encoding of maps (lookup tables). These are used
for finite algebras (as models of rewrite systems). The basic functionality is

lookup :: Map k v -> k -> Maybe v

Let us estimate the cost of the encoding. Consider the (common) case that the key to be
looked up is unknown (i.e., encoded). Then the naive algorithm is to compare the key with
each key in the map. This requires a linear (in the size of the map) number of (encoded)
key comparisons. This is exactly what CO4 generates from the following program.

type Map k v = [(k,v)]
lookup x m = case m of

[] -> Nothing
(k,v): m’ -> if x == k then Just v else lookup x m’

We might think of a balanced tree instead of a list, as in

data Map k v = Leaf | Branch k v (Map k v) (Map k v)
lookup x m = case m of

Leaf -> Nothing
Branch k v l r -> if x == k then Just v else

if x < k then lookup x l else lookup x r

Note that the result of x < k is unknown when generating the formula, since x is encoded.
This means that both branches of if have to be encoded. Again, this is what CO4 does
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4 Automated SAT Encoding for Termination Proofs with Semantic Labelling

when translating the program. This results, again, in linear formula size. We conclude that
using balanced trees for lookups with encoded keys is not helpful.

We can still achieve smaller formulas by giving up on completeness: We encode only a
subset of all maps. We restrict to encoding maps where keys are lists of domain elements
(that is, Map [d] v) as it happens in semantic labelling.

We represent such a map by a list of patterns that are matched from left to right. If we
are lucky, the model is representable in the subset.

data Match d = Any | Exactly d
type MapList d v = [ ( [Match d] , v) ] -- represents Map [d] v

For instance, the pattern [(([Any,Exactly 0],0), ([Any,Any],1)] represents the
function [([0,0],0), ([0,1],1), ([1,0],0), ([1,1],1)].

As discussed earlier, we do have linear cost for the lookup of an encoded key. This cost
increases for pattern matching, but the plan is to reduce it by making the number of patterns
(much) smaller than the domain of the function.

In the extreme case, we use just one pattern [Any,Any,... Any]. This will give a model
where all symbols are interpreted by constant functions.

4 Certification

The approach of iteratively applying “1) labelling, 2) applying several orders with usable
rules, 3) unlabelling” is not easy to certify, since if one would allow arbitrary sound termina-
tion techniques in 2), the whole approach would be unsound: the problem is that unlabelling
on its own is unsound, cf. [9, Example 4.3]. To solve this problem, [9] utilizes a dedicated
semantics for DP problems w.r.t. semantic labelling.

But since this semantics was hard to extend, CeTA is now based on a more general
semantics of DP problems which borrows ideas from relative rewriting [10], where there
are relative DP problems with strict and weak pairs and rules. Then all unlabelling steps
(UL) can be eliminated as follows: CeTA automatically transforms every proof of the form
(P0,R0) SL

↪→ (P1,R1) �1
↪→ · · · �n−1

↪→ (Pn,Rn) UL
↪→ (P ′,R′) into the following proof: first, a split

processor is applied on (P0,R0) which returns two new DP problems: the resulting DP
problem (P ′,R′) and a relative DP problem (P0 − P ′,P ′,R0 −R′,R′) where the first and
third components are strict rules which have to be deleted. Then semantic labelling (SL)
is applied on this relative DP problem and afterwards all orders �1, . . . , �n−1 are used to
finally get the DP problem (∅,Pn,∅,Rn). Termination of this relative DP problem is then
trivially proven as it does neither contain strict pairs nor strict rules.

All generated proofs have been certified via this approach, though initially problems
occurred: the termination tool had bugs in its CPF-export; and CeTA rejected some valid
proofs due to a buggy implementation of the transformation to eliminate unlabelling steps.

5 Related Work and Discussion

Semantic labelling had been used in “early” (2006) termination competitions [8] in termin-
ation provers Torpa (Zantema), Jambox (Endrullis), in TPA (Koprowski), Teparla (van der
Wulp). Here, Jambox used SAT encoding, TPA used predictive labelling [7], and Teparla
used recursive labelling with Boolean models.

Except for TPA, we assume that these early implementations used some kind of generate-
and-test approach, where a model is found in one step, and in an independent step, a
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termination proof is attempted for the labelled system. This means that often, several
models need to be tried, and trivial models are to be excluded somehow.

Currently, semantic labelling with finite models is implemented in AProVE (Giesl et. al)
which still uses a generate-and-test approach, but benefits from using several termination
techniques between labelling and unlabelling. Also the complexity tool TcT (Avanzini et. al)
uses semantic labelling, and both TcT and TPA are similar to our approach: they perform
a combined SAT search for suitable models and orderings [2, 7]. However, both TcT and
TPA use a manual encoding to SAT and do not support certifiable output for labelling.

Our current implementation uses “cheap” termination methods first (SCC decompos-
ition, arctic matrices with small bit width and small dimension), and semantic labelling,
as described here, only as a “last resort”. We remark that proof search is nicely con-
trolled in the LogicT IO monad [6]. We are currently evaluating experimentally the in-
fluence of different choices and shortcuts in the formulation of the termination constraint.
Results will be made available from http://www.imn.htwk-leipzig.de/~abau/wst2014.
html. We believe that Matchbox is the first to produce a certified proof of termination
of TRS/AProVE/JFP_Ex31. This termination problem had been solved by AProVE and
Jambox in 2008, but not later.

Our approach allows to SAT-encode large constraints automatically. This is also the
drawback: resulting formulas can get huge, and pose a challenge to SAT solvers. This
motivates to work further on more efficient compilation in CO4 on the one hand, but also
on tools (type systems) for statically analyzing the “circuit complexity” (the size of the
generated formula) of constraint programs.
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Abstract
In this extended abstract we introduce the first known tool for symbolically proving fair-CTL
properties of (infinite-state) integer programs. Our solution is based on a reduction to existing
techniques for fairness-free CTL model checking. The key idea is to use prophecy variables in
the reduction for the purpose of symbolically partitioning fair from unfair executions.
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1 Introduction
In model checking, fairness allows us to bridge between linear-time (a.k.a. trace-based) and
branching-time (a.k.a. state-based) reasoning. Fairness is crucial, for example, to Vardi &
Wolper’s automata-theoretic technique for LTL verification [11]. Furthermore, when proving
state-based CTL properties, we must often use fairness to model trace-based assumptions
about the environment.

In this paper we introduce the first-known fair-CTL model checking technique for (infinite-
state) integer programs. Our solution reduces fair CTL to fairness-free CTL using prophecy
variables. We use the prophecy to encode a partition of fair from unfair paths. Prophecy
variables introduce additional information into the state-space of the program under con-
sideration, thus allowing fairness-free CTL proving techniques to reason only about fair
executions.

Cognoscenti may at first find this result surprising. It is well known that fair termination
of Turing machines cannot be reduced to termination of Turing machines. The former is Σ1

1-
complete and the latter is RE-complete [10].1 For similar reasons fair-CTL model checking
of Turing machines cannot be reduced to CTL model checking of Turing machines. The key
to our reduction is the use of infinite non-deterministic branching: Recent approaches (e.g.
[2, 6, 7]) facilitate model-checking fairness-free CTL over programs with infinite (discrete)
non-deterministic branching. We use these results to provide a model checking procedure
for fair CTL. As a consequence, in the context of infinite branching, fair and fairness-free
CTL are equally difficult (and similarly for termination).

With our new technique we can build practical tools for automatically proving fair CTL
of programs. We show the viability of our approach in practice using examples drawn from
device drivers and algorithms utilizing shared resources.

1 Sometimes termination refers to universal termination, which entails termination for all possible
inputs. This is a harder problem and is co-RERE-complete.
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2 Abstract: Fairness for Infinite-State Systems

Fair((S, S0, R, L), (p, q)) , (SΩ, S
0
Ω, RΩ, LΩ)

where

SΩ = S × N



(¬p ∧ n′ ≤ n)∨
(p ∧ n′ < n)∨

q


RΩ = {((s, n), (s′, n′)) | (s, s′) ∈ R}∧

S0
Ω = S0 × N

LΩ(s, n) = L(s)

Figure 1 Fair takes a system (S, S0, R, L) and a fairness constraint (p, q) where p, q ⊆ S, and returns
a new system (SΩ, S

0
Ω, RΩ, LΩ). Note that n ≥ 0 is implicit, as n ∈ N.

1.1 Intuition
The procedure builds on a transformation of infinite-state programs by adding a prophecy
variable that truncates unfair paths. We start by presenting the transformation, followed
by an illustrative example adapted for using said transformation, and subsequently our
experimental results.

In Fig. 1, we propose a reduction Fair(M,Ω) that encodes an instantiation of the fairness
constraint within a transition system. A transition system is M = (S, S0, R, L), where S
is a countable set of states, S0 ⊆ S a set of initial states, R ⊆ S × S a transition relation,
and L : S → 2AP a labeling function associating a set of propositions with every state
s ∈ S. A trace or a path of a transition system is either a finite or infinite sequence
of states. When given a transition system (S, S0, R, L) and a strong fairness constraint
Ω = (p, q) where p, q ⊆ S, Fair(M,Ω) returns a new transition system that, through the
use of a prophecy variable n, infers all possible paths that satisfy the fairness constraint,
while avoiding all paths violating the fairness policy. Intuitively, n is decreased whenever
a transition imposing p ∧ n′ < n is taken. Since n ∈ N, n cannot decrease infinitely often,
thus enforcing the eventual invalidation of the transition p ∧ n′ < n. Therefore, RΩ would
only allow a transition to proceed if q holds or ¬p ∧ n′ ≤ n holds. That is, either q occurs
infinitely often or p will occur finitely often. Note that a q-transition imposes no constraints
on n′, which effectively resets n′ to an arbitrary value.

The conversion of M with fairness constraint Ω to Fair(M,Ω) involves the truncation of
paths due to the wrong estimation of the number of p-s until q. This means that Fair(M,Ω)
can include (maximal) finite paths that are prefixes of unfair infinite paths. It follows that
when model checking CTL we have to ensure that these paths do not interfere with the
validity of our model checking procedure. Hence, we have to distinguish between maximal
(finite) paths that occur in M and those introduced by our reduction. This is done through
adding a proposition t to mark all original “valid” termination states prior to the reduction
in Fig. 1, followed by adjusting the CTL specification through a transformation.

2 Illustrative Example
We first provide high-level understanding of our approach through an example.

Consider the example in Fig. 2 for the CTL property AG(x = 0 → AF(x = 1)) and
the fairness constraint GF τ2 → GF m > 0 for the initial transition system introduced in
(a). That is, we are attempting to prove that for all states, when x = 0 then we must
always eventually reach a state such that x = 1 under the fairness constraint that if the
transition τ2 occurs infinitely often, then m must be greater than 0 infinitely often. We
demonstrate the resulting transformation for this infinite-state program which allows us to
reduce fair model checking to model checking. By applying Fair(M,Ω) from Fig. 1, we
obtain (b) where each original transition, τ2, τ3, and τ4, are adjoined with restrictions such
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`1 `2

τ1 : x′ = 0

τ2 : m ≤ 0
m′ = ∗

τ3 : m > 0

τ4 : x′ = 1

`1 `2

τ1 : x′ = 0

τ2 : m ≤ 0 ∧
rΩ
m′ = ∗

τ3 : m > 0 ∧ rΩ

τ4 : x′ = 1
rΩ

rΩ : { (¬τ2 ∧ n′ ≤ n) ∨ (τ2 ∧ n′ < n) ∨m > 0 } ∧ n ≥ 0

(a) (b)

Figure 2 Reducing a transition system with the CTL property AG(x = 0→ AF(x = 1)) and the weak
fairness constraint GF τ2 → GF m > 0. The original transition system is represented in (a), followed by
the application of our fairness reduction in (b).

that {(¬τ2 ∧ n′ ≤ n) ∨ (τ2 ∧ n′ < n) ∨m > 0 }∧n ≥ 0 holds. That is, we wish to restrict
our transition relations such that if τ2 is visited infinitely often, then the variable m must
be > 0 infinitely often. In τ2, the assignment m′ = ∗ indicates that the variable m is being
assigned to a nondeterministic value, thus with every iteration of the loop, m acquires a
new value. In the original transition system, τ2 can be taken infinitely often given said non-
determinism, however in (b), such case is not possible. The transition τ2 in (b) now requires
that n be decreased on every iteration. Since n ∈ N, n cannot be decreased infinitely often,
causing the eventual restriction to the transition τ2. Such an incidence is categorized as a
finite path that is a prefix of some unfair infinite paths. As previously mentioned, such paths
are disregarded. This leaves only paths where the prophecy variable “guessed” correctly.
That is, it prophesized a value such that τ3 is reached, thus allowing our property to hold.
The transformed figure in (b) can then be employed by an existing CTL model checking
algorithm for infinite-state systems in order to verify the input CTL formula. We assume
that the CTL model checking algorithm returns an assertion characterizing all the states in
which a CTL formula holds. Tools such as Beyene et al. [2] and Cook et al. [4] support this
functionality.

3 Experiments
We discuss the results of preliminary experiments with a prototype implementation. We
applied our tool to several small programs: a classical mutual exclusion algorithm as well
as code fragments drawn from device drivers. Our implementation is based on an extension
to T2 [3, 8].2 Despite theoretical contributions to the topic of fair CTL for infinite-state
programs [1], there are no known tools supporting fair CTL for infinite-state programs. We
are thus unable to make experimental comparisons.

Fig. 3 shows the results of our experiments. In our experiments we verified liveness
properties, expressed in CTL. For each program we tested for both the success of the liveness
property with a fairness constraint and its failure due to either a lack of fairness or a presence
of a bug. A X represents the existence of a validity proof, while χ represents the existence
of a counterexample. We denote the lines of code in our program by LOC and the fairness
constraint by FC.

Note that the Bakery algorithm is meant to be performed on a multi-threaded program.
Due to our lack of support for concurrency, we have re-written the algorithm sequentially in

2 New versions of T2 are not publicly available due to legal constraints. However, we are currently
working through a release process with the Microsoft legal team.
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4 Abstract: Fairness for Infinite-State Systems

Program LOC Property FC Time(s) Result
Windows Device Driver 1 20 AG(PPBlockInits()⇒ Yes. 14.43 X

AFPPUnblockInits())
Windows Device Driver 1 20 AG(PPBlockInits()⇒ No. 2.16 χ

AFPPUnblockInits())
Windows Device Driver 1 20 AG(PPBlockInits()⇒ Yes. 10.11 χ
+ bug AFPPUnblockInits())
Bakery 37 AG(Noncritical⇒ No. 16.43 X

AFCritical)
Bakery 37 AG(Noncritical⇒ Yes. 2.98 χ

AFCritical)
Bakery + bug 37 AG(Noncritical⇒ No. 12.48 χ

AFCritical)
Windows Device Driver 2 374 AG(KeAcquireSpinLock()⇒ Yes. 18.84 X

AFKeReleaseSpinLock())
Windows Device Driver 2 374 AG(KeAcquireSpinLock()⇒ No. 14.12 χ

AFKeReleaseSpinLock)
Windows Device Driver 2 374 AG(KeAcquireSpinLock()⇒ Yes. 18.94 χ
+ bug AFKeRelaseSpinLock())
Windows Device Driver 3 58 AF(KeEnCriticalRegion()⇒ Yes. 12.58 χ

EGKeExCriticalRegion())
Windows Device Driver 3 58 AF(KeEnCriticalRegion()⇒ No. 9.62 X

EGKeExCriticalRegion)
Figure 3 Windows Device Driver 1 uses the fairness constraint GF(IoCreateDevice.exit{1}) ⇒

GF(status! = STATUS_OBJ_NAME_COLLISION). Windows Device Driver 2 and 3 utilize the same fairness
constraint in relation to checking the acquisition and release of spin locks and the entrance and exit of
critical regions, respectively. The Bakery algorithm utilizes a fairness constraint of the form GF(p) ⇒
GF(q) with p and q being relative to our sequential implementation.

a manner which simulates the behavior of a multi-threaded program. The variables p and
q in the fairness constraint of Bakery denote specific program locations in our sequential
algorithm.

For the existential fragment of CTL, fairness constraints restrict the transition relations
required to prove an existential property, as demonstrated by Windows Device Driver 3.
For universal CTL properties, fairness policies can assist in enforcing properties to hold that
previously did not. Thus, our tool allows us to both prove and disprove the negation of each
of the properties.

4 Discussion
We have shown the first-known fair-CTL model checking technique for integer based infinite-
state programs through a reduction to existing techniques for fairness-free CTL model check-
ing. The reduction relies on utilizing prophecy variables to introduce additional information
into the state-space of the program under consideration. This allows fairness-free CTL
proving techniques to reason only about fair executions. Our implementation seamlessly
builds upon existing CTL proving techniques, resulting in experiments which demonstrate
the practical viability of our approach.

Furthermore, our technique allows us to bridge between linear-time (LTL) and branching-
time (CTL) reasoning. Cook et al. [5] have described an iterative symbolic determination
procedure which efficiently uses techniques associated with CTL to verify a subset of LTL
properties. However, these corresponding branching time techniques provide no support for
verifying fair-CTL, thus excluding a large set of linear-time liveness properties necessitating
fairness. Our contribution would thus allow for full support of LTL verification via CTL
model checking techniques. Not only so, but a seamless integration between LTL and CTL
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reasoning may make way for further extensions supporting CTL* verification of infinite-state
programs [9]. We hope to further examine both the viability and practicality of such an
extension.
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Abstract
In this paper we introduce a general method for proving deadlock and livelock freedom of con-
current programs with shared memory. Our goal in this work is to support programs which use
locks stored in mutable data structures. The key to our technique is the observation that de-
pendencies between locks can be abstracted using recursion and non-determinism in a sequential
logic program such that termination of the abstraction implies deadlock and livelock freedom of
the original program.
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1 Introduction

Concurrent programs that use locks stored in mutable data structures are especially hard
to show deadlock/livelock free, as a static lock acquisition order is difficult to impose
given memory allocation, de-allocation and re-allocation. Currently the search for effective
automatic methods for this problem remains open.

In this paper we present a procedure that addresses this problem via abstraction to the
question of termination of a sequential logic program. We introduce an abstraction method
that—using recursion and non-determinism—captures the dependencies between locks in the
original concurrent program. Termination of our abstraction implies acyclicity of the lock
dependency relation, and hence deadlock freedom. Moreover, termination of our abstraction
also implies that threads cannot diverge while holding a lock. Together with the property
that locks cannot be acquired infinitely often (which can be proved using existing techniques),
this establishes livelock freedom.

To show the viability of our approach, we have successfully applied it to a series of
challenging problems, among them a lock-coupling list [10], the optimistic list of Heller
et al. [5], the lock-based queue of Michael and Scott [7], and the balanced binary trees
of Kung and Lehman [6], Bronson et al. [1], and Schlatter Ellis [8]. The last example is
particularly challenging, as it uses different lock types which are inter-dependent. To the best

∗ This work was supported by Microsoft Research Cambridge.
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2 Reducing Deadlock and Livelock Freedom to Termination

of our knowledge this represents the first known fully automatable proofs of deadlock/livelock
freedom for these published algorithms.1

2 Approach

Our approach is based on showing two properties: (1) locks cannot be acquired infinitely
often and (2) each lock acquired by the program is eventually released again. Together these
imply deadlock and livelock freedom of the concurrent program. Note that we assume a fair
scheduler, as property (2) is trivially false otherwise.

We use the previous separation logic based techniques underlying the tool CAVE [11] to
prove memory safety, data structure consistency, and to learn the possible effects on the
shared data structures, expressed as actions [2]. We then use another previous technique [4]
to establish that those actions are not executed infinitely often, which already implies (1).

Next we employ our abstraction construction, which is designed to represent the de-
pendencies between the locks as a sequential logic program. The abstraction is based on
the fact that whenever a thread T1 tries to acquire a lock held by another thread T2, T2
must first reach a corresponding unlock operation before T1 can continue its execution.2
If we interpret this dependency of the further execution of T1 on the execution of T2 as a
control switch from T1 to T2 until the latter reaches the matching unlock operation, we can
express this dependency as a function call (using lock operations as entry or call points and
corresponding unlock operations as exit or return points). However, when switching control
from a thread T1 to another thread T2, we do not know which lock operation in T2’s code
was executed to acquire the lock T1 is waiting for. Hence, in our abstraction we need to
allow a non-deterministic choice that could jump to any lock operation of T2. Moreover, we
need to pass a representation of the current state of the shared data structure where the lock
has been acquired as an argument of each call to establish a relation on the heap locations
where locks are acquired. Between the calls to lock operations, our abstraction mimics the
behaviour of the program on the shared data structure. Because we allow non-deterministic
jumps to arbitrary lock operations, we use the same predicate in the resulting logic program
for all lock operations. Thus, we will obtain a recursive and non-deterministic, but sequential
program simulating the control switches between the threads whenever they need to wait for
a lock to be released. If this program is terminating, we know that no thread has to wait
forever to release a lock. Together with an assumption of a fair scheduler, this implies (2): If
a thread fails to terminate after acquiring a lock, so will the abstraction. Together with the
already established property that lock actions cannot be executed infinitely often, this implies
livelock freedom. Furthermore, the lock abstraction forms a disjunctive relation on heap
locations representing all possible lock orderings. If the program is terminating, this rela-
tion is well-founded and cannot contain circular dependencies. This implies deadlock freedom.

Example. Consider the the Java-like program in Figure 1, which implements an add
operation in a concurrent finite acyclic list that uses hand-over-hand locking to increase the
lock-granularity. The syntax <c> is used to indicate the atomic execution of the command c.

1 Caveat: Some of the steps in our method depend on previously published tools that are no longer
available. Thus, these steps are currently performed manually, but could be automated with additional
development work to replace these old tools.

2 In principle, this is an over-approximation if locks can be released by threads which did not acquire
them. However, if T2 itself releases the lock, we can be sure that it is no longer held by T2.
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1 /∗ Create a node ∗/
2 Node node(int e,
3 Node next) {
4 <h = new();>
5 <h.lock = 0;>
6 <h.value = e;>
7 <h.next = next;>
8 return h;
9 }

10
11 /∗ Add e to sorted
12 list l. ∗/
13 add(List l, int e) {
14 Node p,c,h;
15 int v;

16 lock(l);
17 <p = l.head;>
18 if (p == null) {
19 // empty list
20 h = node(e, null);
21 <l.head = h;>
22 unlock(l);
23 return;
24 }
25 lock(p);
26 <v = p.value;>
27 if (v >= e) {
28 // new first node
29 h = node(e, p);
30 <l.head = h;>

31 unlock(l);
32 unlock(p);
33 return;
34 }
35 unlock(l);
36 <c = p.next;>
37
38 /∗ hand−over−
39 hand locking ∗/
40 while (c != null) {
41 lock(c);
42 <v = c.value;>
43 if (v >= e) {
44 h = node(e, c);
45 <p.next = h;>

46 unlock(p);
47 unlock(c);
48 return;
49 }
50 unlock(p);
51 p = c;
52 <c = p.next;>
53 }
54 h = node(e, null);
55 <p.next = h;>
56 unlock(p);
57 return;
58 }

Figure 1 Thread-safe insert into sorted list, managed using hand-over-hand locking.

The type Node describes a node in a singly-linked list with fields lock, value, and next. The
type List is a record with fields head and lock, the former pointing to the head of the list.

Our aim is to prove deadlock/livelock freedom of a program with an arbitrary finite
number of threads, each executing the code in Figure 1 with arbitrary values passed to the
add operation. The difficulty in proving this concurrent program deadlock- and livelock-free
is the hand-over-hand locking seen in the program: it is a common pattern in concurrent
programs, and unfortunately it precludes the use of any previously known fully-automatic
approach to prove deadlock or livelock freedom.

The actions which can occur in this program are adding (line 21, 30, 45, or 55), locking
(line 16, 25, or 41) and unlocking (line 22, 31, 32, 35, 46, 47, 50, or 56) a node in the list. It
is easy to see that adding a node cannot be executed infinitely often as the code (and hence
each thread) directly terminates thereafter. Lock and unlock actions both occur in the loop
starting at line 40, so they occur finitely often if this loop always terminates. The number
of loop iterations is bounded by the finite length of the original list plus the finite number
of add actions executed by the threads. Hence, no actions can be executed infinitely often,
establishing property (1).

We show property (2) automatically by creating a lock abstraction, which characterizes
the paths from each lock operation to the matching unlock operation. In our example, if we
start at a lock operation, we can at most traverse one more lock operation before reaching a
matching unlock operation (e.g. from line 41, we either directly reach a matching unlock
operation at line 47 or 56 without traversing any further lock operations, or we enter the
loop again and definitely reach a matching unlock operation at line 46 or 50 after traversing
the lock operation at line 41 again – note that the position in the list where the lock has
been acquired originally is referenced by p after executing line 51). Moreover, each such lock
dependency acquires the second lock at the successor of the node where the first lock has
been acquired. Having a finite list which only grows finitely often, this process cannot be
repeated infinitely often. Also, as the direction in which further locks are acquired is always
the same, it is not possible to form a circular dependency. This shows that eventually every
attempt to acquire a lock is successful, which is equivalent to property (2).

This reasoning is captured by the logic program in Figure 2, which results from our
construction. Here, we observe that the data structure is represented by terms using the
constructors h/1 and lh/1 for the head structure, n/2 and ln/2 for nodes within the list, and
nil for the empty list. The respective versions with the prefix l denote structure parts which
are known to be locked by some thread while the other versions denote an unknown lock
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4 Reducing Deadlock and Livelock Freedom to Termination

lock(D,N).
lock(D1,N1) :−

p1617182425(
D1,E1,P1,C1,H1,V1,
L2,E2,P2,C2,H2,V2),

interf(L2,P2,C2,H2,N1,
L3,P3,C3,H3,N2),

lock(P3,N2).
lock(D1,N1) :−

p2526273435364041(
L1,E1,D1,C1,H1,V1,
L2,E2,P2,C2,H2,V2),

interf(L2,P2,C2,H2,N1,
L3,P3,C3,H3,N2),

lock(C3,N2).
lock(D1,N1) :−

p414243495051524041(
L1,E1,P1,D1,H1,V1,
L2,E2,P2,C2,H2,V2),

interf(L2,P2,C2,H2,N1,
L3,P3,C3,H3,N2),

lock(C3,N2).

p1617182425(
h(n(I,R)),E,P,C,H,V,
lh(n(I,R)),E,n(I,R),
C,H,V).

p2526273435364041(
lh(n(I1,n(I2,R1))),E,
n(I1,n(I2,R1)),C,H,V,
h(R2),E,ln(I1,n(I2,R1)),
n(I2,R1),H,I1).

p414243495051524041(
h(R1),E,
ln(I1,n(I2,n(I3,R2))),
n(I2,n(I3,R2)),H,I1,
h(R1),E,ln(I2,n(I3,R2)),
n(I3,R2),H,I2).

interf(L,P,C,H,N,
L,P,C,H,N).

interf(L1,P1,C1,H1,N1,
L2,P2,C2,H2,N2) :−

envstep(L1,N1,L3,N3),
interf(L3,P1,C1,H1,N3,

L2,P2,C2,H2,N2).

interf(L1,P1,C1,H1,N1,
L2,P2,C2,H2,N2) :−

envstep(P1,N1,P3,N3),
interf(L1,P3,C1,H1,N3,

L2,P2,C2,H2,N2).
interf(L1,P1,C1,H1,N1,

L2,P2,C2,H2,N2) :−
envstep(C1,N1,C3,N3),
interf(L1,P1,C3,H1,N3,

L2,P2,C2,H2,N2).
interf(L1,P1,C1,H1,N1,

L2,P2,C2,H2,N2) :−
envstep(H1,N1,H3,N3),
interf(L1,P1,C1,H3,N3,

L2,P2,C2,H2,N2).
envstep(n(I1,R1),s(N1),

n(I1,R2),N2) :−
envstep(R1,N1,R2,N2).

envstep(ln(I1,R1),s(N1),
ln(I1,R2),N2) :−

envstep(R1,N1,R2,N2).

envstep(h(R1),s(N1),
h(R2),N2) :−

envstep(R1,N1,R2,N2).
envstep(lh(R1),s(N1),

lh(R2),N2) :−
envstep(R1,N1,R2,N2).

envstep(R1,s(N),R2,N) :−
addH(R1,R2).

envstep(R1,s(N),R2,N) :−
addHN(R1,R2).

envstep(R1,s(N),R2,N) :−
addNN(R1,R2).

envstep(R1,s(N),R2,N) :−
addN(R1,R2).

addH(h(nil),
h(n(I2,nil))).

addHN(h(n(I1,R)),
h(n(I2,n(I1,R)))).

addNN(n(I1,n(I2,R)),
n(I1,n(I3,n(I2,R)))).

addN(n(I1,nil),
n(I1,n(I3,nil))).

Figure 2 Lock abstraction whose termination implies deadlock/livelock freedom.

status. Using this term representation, the lock predicate encodes the lock dependencies.
Its arguments are the state of the data structure where a lock is acquired and a prophecy
counter stating how many operations can still be performed by the interfering environment
(i.e. other threads). The use of the latter is motivated by the fact that all actions are known
to be executed only finitely often. Next, a postcondition transformer (starting with p and
displaying the two digits line numbers of the path it follows in its name) is used to mimic the
program behaviour along a path on the program variables. Afterwards, the interf predicate
is used to apply the four add actions (corresponding to the four locations where nodes are
added) non-deterministically to the data structure representations pointed to by the program
variables (variables which provably never point to the shared data structure are excluded)
while the prophecy counter is reduced accordingly. Finally, we have the recursive call to
the lock predicate. Its first argument is the respective program variable passed to the lock
operation which might block the current thread’s execution. Its second argument is the
number of remaining interference operations. The dependency described above is encoded by
the last clause for the lock predicate.

The lock abstraction captures all execution paths that start at a lock operation and
traverse further lock operations before reaching the matching unlock operation for the initial
lock operation. Termination of the lock abstraction program thus implies that each acquired
lock must eventually be released. This implies deadlock freedom and, together with the fact
that locks cannot be acquired infinitely often, also implies livelock freedom.

To prove termination automatically, we apply the termination prover AProVE [9, 3], which
proves the abstraction in our example terminating in 15 seconds. Our method scales to
bigger programs, as the complexity of the abstraction is dependent on the number of actions
and the size of the critical sections protected by the locks (i.e. those parts of the program
between lock and corresponding unlock operations). Both are typically small in practice to
allow as much concurrency as possible.

3 Conclusion

The problem of proving deadlock and livelock freedom is made difficult by the level of cross
thread lock dependencies. In this paper we have presented an abstraction technique that
encodes the lock dependencies from the concurrent program into a sequential logic program
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such that existing termination tools prove livelock and deadlock freedom. Our approach has
been successfully applied to a series of challenging problems, including a lock-coupling list
[10], the optimistic list of Heller et al. [5], the lock-based queue of Michael and Scott [7], and
the balanced binary trees of Kung and Lehman [6], Bronson et al. [1], and Schlatter Ellis [8].
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Abstract
Yet another proof of well-foundedness of the (multiset) recursive path ordering is provided.
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1 Introduction

The recursive path ordering [3] is a popular family of well-founded orderings on terms (trees),
used for proving termination of functional programs (e.g. [8]) and rewrite systems (e.g. [11,
9, 2]) and for guiding completion procedures and theorem provers (e.g. [13]). See [4].

We give a new proof of its well-foundedness in what follows. Some previous proof ap-
proaches may be found in [3, 15, 10, 12, 1, 5]. Though some of the orderings in these
references differ, when function symbols are totally ordered, they all coincide [16]. So a
proof of one is a proof of all.

2 Basics

Let F be a set of symbols, let A, G ⊆ F , and let TG(A) denote the (finite ordered) trees
constructed with leaves (atoms) taken from A and (internal) nodes from G. We are also
given a well-founded partial ordering ⋗ on F (a precedence); we will assume throughout that
each leaf in A is greater in this ordering than every node in G.

Let T n
G(A) denote those trees in TG(A) in which the (maximum) nesting of maximal

nodes in G is at most n. So

TF (A) = ∞⋃
n=0

T n
F (A)

We refer to n as the altitude of those trees that are in T n
G(A) ∖ T n−1

G (A).
It is convenient to let

max B = {f ∈ F ∶ /∃ g ∈ B. g ⋗ f}
be all the maximal elements of partially ordered set B and

<B = B ∖max B = {f ∈ F ∶ ∃g ∈ B. g ⋗ f}
be all the rest (the non-maximal elements in B). It can be that B = <B when B has no
maximal elements (max B = ∅), as for the natural numbers, for example.

Bags (finite multisets)

M(A) = {*a1, . . . , a`+ ∶ a1, . . . , a` ∈ A, ` ∈ N}
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2 Another Proof for the Recursive Path Ordering

of elements of well-founded A are known to be well-founded under the bag (multiset) order-
ing [7]. The bag ordering ≫ on A ∪M(A) may be defined as the transitive closure of the
following rules:

*a+ ≫ a

a > b1, . . . , b`

*a+ ≫ *b1, . . . , b`+
*a1, . . . , ak+ ≫ *b1, . . . , b`+

*c, a1, . . . , ak+ ≫ *c, b1, . . . , b`+

k, ` ≥ 0, a, ai, bj , c ∈ A. This makes a bag bigger than each of its elements.
We also allow colored bags, like red bags *1, 1, 3+ ∈ Mr(N) and blue bags *a, c, c+ ∈Mb(a..z), which are incomparable. The ordering rules are color specific.
Given a partial ordering ⋗ on F = A∪G, the original (multiset) path ordering > on TG(A)

is the transitive closure of the following recursive rules:

f(. . . , ai, . . .) > ai

f ⋗ g, f(a1, . . . , ak) > b1, . . . , b`

f(a1, . . . , ak) > g(b1, . . . , b`)
*a1, . . . , ak+ ≫ *b1, . . . , b`+

f(a1, . . . , ak) > f(b1, . . . , b`)
k, ` ∈ N, f, g ∈ F , ai, bj ∈ TG(A). The bags in the last rule are compared recursively in the
presently defined ordering.

In the next section, we propose an alternative definition for this path ordering. The idea
is to transform trees before comparing by turning each subtree rooted in a node labeled by
maximal symbol into a leaf containing the bag of that node’s children.

It pays to recall some properties of the original definition: The following facts hold for
the path ordering >:

If a tree s contains a symbol (node or leaf) that is larger than every symbol in another
tree t, then s > t.
A leaf s is bigger than a non-leaf tree t iff s is bigger than all leaves (and nodes) of t.
(As stated earlier, we are presuming that all leaves are bigger than all nodes.)
A leaf s is smaller than a non-leaf tree t iff s is smaller than or the same as some leaf (or
node) of t.

3 Repackaging

We deal here with the case where F is totally (well-) ordered. To compare trees over F , take
each maximal subtree rooted in the maximal element in F and turn it into a bag of lower
trees. Let this operation on a tree t be denoted t̂. If g is the largest node in t = u[v1, . . . , vk],
which can be decomposed into a “cap” u not containing g and subtrees v1, . . . , vk each headed
by g, then t̂ = u[a1, . . . , ak] where each ai is a leaf labeled by the bag of immediate subtrees
of vi. The nodes of t̂ are all smaller than g. The new leaves of t̂ contain only strictly lower
trees than the original t.

To compare trees s and t, one first sees which has the largest leaf, then which has the
largest node. Those being equal, this is followed by comparing the decomposed trees ŝ and
t̂, with the new leaves made larger than the remaining node labels.

Let Bn be short for T n
G(A) and let M+(Bn) =M(Bn) ∪ A be bags of these trees plus

leaves A, with leaves ordered above than these bags. Trees TG(A) = ⋃∞n=0 Bn are viewed and
compared inductively as follows:

B0 = T<G(A) — provided <G ⊊ G (1)
Bn+1 =M+

g(Bn) ×G × T<G(M+
g(Bn)) — where g = max G (2)

B0 = ⋃
H⋖G

TH(A) — if max G = ∅ (3)
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where the H ⋖ G are proper initial segments of ordered G. (The initial segments of N are[0..i] for all i ∈ N, for example.) The new leavesMg(Bn) are placed below A and above <G
in the leaf ordering.

1. The first case is just two ways of saying that all nodes are non-maximal in G.
2. The second means that a tree of altitude n+1 can be viewed instead as a tree built from

smaller nodes and from leaves that are bags of lower trees Bn, first comparing the trees’
maximal leaves and nodes and then the trees themselves.

3. What if G has no maximal element and so G = <G, in which case the first case doesn’t
apply? Still each tree has a maximal element, and so any two trees may be compared ac-
cording to the ordering of trees with nodes up to the largest node in either. (Technically,
the first case is subsumed by this one.)

▸ Example 1. Consider binary trees built from leaves A = a ⋗ b ⋗ c and internal
nodes G ∶ ↑ ⋗ × ⋗ +. The trees T 1

G(A) of altitude one include (b ↑ b)+(a×(b+ c)) and(b ↑ b)+((a× b)+(a× c))—think distributivity. They both have the same maximal node ↑
and the same maximal leaf a. Applying the above decomposition yields

⎫⎩b, b⎧⎭ +(a×(b+ c))
and

⎫⎩b, b⎧⎭ +((a× b)+(a× c))
respectively, where each box is a leaf. Now they both have the same maximal node × and
the same maximal leaf a as before. The next decompositions are

⎫⎩b, b⎧⎭ + ⎫⎩a, b+ c⎧⎭
and

⎫⎩b, b⎧⎭ + ( ⎫⎩a, b⎧⎭ + ⎫⎩a, c⎧⎭ )
with maximal leaf *b, b+. One more step gives

⎫⎪⎪⎪⎩ ⎫⎩b, b⎧⎭ , ⎫⎩a, b+ c⎧⎭ ⎧⎪⎪⎪⎭
and

⎫⎪⎪⎪⎩ ⎫⎩b, b⎧⎭ , ⎫⎩a, b⎧⎭ + ⎫⎩a, c⎧⎭ ⎧⎪⎪⎪⎭
To compare these two leaves, we compare the bags

⎫⎪⎪⎪⎩ ⎫⎩b, b⎧⎭ , ⎫⎩a, b+ c⎧⎭ ⎧⎪⎪⎪⎭
and

⎫⎪⎪⎪⎩ ⎫⎩b, b⎧⎭ , ⎫⎩a, b⎧⎭ + ⎫⎩a, c⎧⎭ ⎧⎪⎪⎪⎭
The first is larger since its leaf element *a, b+ c+ is larger than the leaves *a, b+ and *a, c+ of
the tree *a, b++ *a, c+. That is because b + c is bigger than both b and c.
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4 Another Proof for the Recursive Path Ordering

To see that the new version is well-founded, consider an infinite descending sequence
and reason by induction on maximal node and altitude. Since the leaves and nodes are
well-ordered, the maximal leaf and maximal node stabilize from some point on. Look at
the decompositions of those trees, all of whose nodes are strictly smaller than the maximal
node in the original sequence. So, by induction, the old and new leaves are well-ordered,
and hence that sequence of decompositions must in fact be finite.

The new tree ordering on TF ({⊺}) (starting with maximal leaves) is identical to the
original path ordering. Any tree can be put in this form by sprouting a ⊺-leaf from each
original leaf.

4 Discussion

We are hopeful that our redefinition of the recursive path ordering may facilitate extensions
beyond Γ0, which are of value for demonstrating termination of “non-simplifying” rewriting
systems. The reason is that the definition given here bears a measure of similarity to the
ordering of ordinal diagrams; see [14, 6].

When the ordering on nodes is partial, there may be more than one maximal node. Each
should get its own incomparable bag of shallower trees. The details remain to be worked
out.
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Abstract
We describe a method for proving non-termination of term rewriting systems that do not admit
looping reductions. As certificates of non-termination, we employ regular (tree) automata.

1998 ACM Subject Classification D.1.1, D.3.1, F.4.1, F.4.2, I.1.1, I.1.3

Keywords and phrases non-termination, finite automata, regular languages

1 Introduction

We describe a method for proving non-termination of term rewriting systems that do not
admit looping reductions, that is, reductions from a term t to a term C[tσ] containing a
substitution instance of t. For this purpose, we employ tree automata as certificates of
non-termination. For proving non-termination of a term rewriting system R, we search a
tree automaton A whose language L(A) is not empty, weakly closed under rewriting and
every term of the language contains a redex occurrence. We have fully automated the search
for these certificates employing SAT-solvers.

All automata that we use as example in this paper have been found automatically; this
concerns in particular fully automated proofs of non-termination for the following two rewrite
systems.

I Example 1. We consider the following string rewriting system:

zL→ Lz Rz → zR bL→ bR Rb→ Lzb

This rewrite system admits no reductions of the form s→∗ `sr.

I Example 2. We consider the S-rule from combinatory logic:

ap(ap(ap(S , x), y), z)→ ap(ap(x, z), ap(y, z))

For the S-rule it is known that there are no reductions t→∗ C[t] for ground terms t, see [15].
For open terms t the existence of reductions t→∗ C[tσ] is open.

It turns out that the method can be fruitfully applied to obtain non-termination proofs
of several string rewriting systems that have remained unsolved in the last full run of the
termination competition.

Related Work

The paper [11] investigates necessary conditions for the existence of loops. The work [17]
employs SAT solvers to find loops, [18] uses forward closures to find loops efficiently, and the
wook [16] introduces ‘compressed loops’ to find certain forms of (possibly very long) loops.

Non-termination beyond loops has been investigated in [14] and [2]; we note that Example 2
cannot be handled by these techniques.

26



2 Non-termination using Regular Languages

Here we prove non-looping non-termination on regular languages. The converse, local
termination on regular languages, has been investigated in [3]. Regular (tree) automata have
been fruitfully applied to a wide rage of properties of term rewriting systems: for proving
termination [10, 8, 12], for infinitary normalization [4], for proving liveness [13], and for
analysing reachability and deciding the existance of common reducts [9, 5].

2 Non-termination and Weakly Closed Languages

I Definition 3. Let L ⊆ T (Σ,∅) a language and R a TRS over Σ. Then L is called:
closed under rewriting if for every t ∈ L and s such that t→ s, one has s ∈ L, and
weakly closed under rewriting if for every t ∈ L that is not in normal form, there exists
s ∈ L such that t→R s.

The following theorem describes the basic idea that we employ for proving non-termination.

I Theorem 4. A term rewriting system R over Σ is non-terminating if and only if there
exists a non-empty language L ⊆ T (Σ,X ) such that

(i) every t ∈ L contains a redex (that is, t→ s for some term s), and
(ii) L is weakly closed under rewriting. J
A language fulfilling the properties of Theorem 4 is also called a recurrence set, see [1].

To automate this method, we need to restrict to a certain family of languages. In this
paper, we consider regular tree languages. To guarantee that the language of a tree automaton
is weakly closed under rewriting, we check that the language is not empty and that the
automaton is a quasi-model (see Definition 13) for the rewrite system. The latter condition
is actually too strict; it implies that the languages is not only weakly closed, but also closed
under rewriting. In future, we plan to relieve this restriction.

3 Tree Automata

I Definition 5. A (nondeterministic finite) tree automaton A over a signature Σ is a tuple
A = 〈Q,Σ, F, δ 〉 where

(i) Q is a finite set of states,
(ii) F ⊆ Q is a set of accepting states, and
(iii) {δf}f∈Σ is a family of transition relations such that for every f ∈ Σ:

δf ⊆ Qn ×Q

where n is the arity of f .

In examples, we often write the transition relation δf as →f .

I Example 6. The following is a tree automaton for the signature in Example 1. We consider
string rewriting systems as term rewriting systems by interpreting all symbols as unary and
adding a special constant ε to denote the end of the word. Let ALR = 〈Q,Σ, F,→〉 where
Q = {0, 1, 2, 3}, Σ = {b, L,R, 0, ε}, F = {3} and

→ε 0 1→z 1 0→b 1 1→R 2 1→L 2
2→z 2 2→b 3

The transition relation for ε can be thought of as defining the initial states (here 0) of a word
automaton.
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I Example 7. The following is a tree automaton for Example 2. Let AS = 〈Q,Σ, F,→〉
where Q = {0, 1, 2, 3, 4}, Σ = {ap,S}, F = {4} and

→S 0 (0, 0)→ap 1 (1, 0)→ap 2 (2, 2)→ap 3 (3, 3)→ap 3
(0, 2)→ap 2 (2, 3)→ap 3 (3, 3)→ap 4
(0, 3)→ap 2

In Example 12 we show that this automaton accepts the term SSS(SSS)(SSS(SSS)).

I Definition 8. Let A = 〈Q,Σ, F, δ 〉 be a tree automaton over Σ. For terms t ∈ T (Σ,X )
and assignments α : X → P(Q) we define the interpretation [t, α]A by:

[x, α]A = α(x)
[f(t1, . . . , tn), α]A = {q | (q1, . . . , qn) ∈ [t1, α]A × . . .× [tn, α]A, 〈 (q1, . . . , qn), q 〉 ∈ δf}

Whenever A is clear from the context, we write [t, α] as shorthand for [t, α]A. For ground
terms t, the interpretation is independent of α, allowing is to write [t]A or [t] for short.

I Example 9. We use the automaton AS from Example 7. Let α(x) = {2}, then we have:

[S , α] = {0} [ap(S ,S), α] = {1} [ap(ap(S ,S),S), α] = {2}
[ap(x, x), α] = {3} [ap(ap(x, x), ap(x, x)), α] = {3, 4}

I Definition 10. Let A = 〈Q,Σ, F, δ 〉 be a tree automaton over Σ. The language L(A)
accepted by A is the set L(A) = {t | t ∈ T (Σ,∅), [t]A ∩ F 6= ∅} of ground terms.

I Example 11. The automaton in Example 6 accepts all words of the form b z∗ (L|R) z∗ b,
that is, all words that start with b, end with b, contain one L or R and otherwise only z.

I Example 12. We continue Example 9:

[ap(ap(S ,S),S)] = {2} [ap( ap(ap(S ,S),S) , ap(ap(S ,S),S) )] = {3}
[ap( ap(ap(ap(S ,S),S), ap(ap(S ,S),S)) , ap(ap(ap(S ,S),S), ap(ap(S ,S),S)) )] = {3, 4}

Thus F ∩[SSS(SSS)(SSS(SSS))] = {4} 6= ∅ and hence the term is accepted by the automaton.

4 Closure under Rewriting

I Definition 13. A tree automaton A = 〈Q,Σ, F, δ 〉 is a quasi-model for a term rewriting
system R over Σ if [`, α]A ⊆ [r, α]A for every `→ r ∈ R and α : X → P(Q).

Actually, it suffices to check the property [`, α]A ⊆ [r, α]A for assignments α : X → P(Q)
that map variables to singleton sets.

I Lemma 14. A tree automaton A = 〈Q,Σ, F, δ 〉 is a quasi-model for a term rewriting
system R over Σ iff [`, α]A ⊆ [r, α]A for every `→ r ∈ R and α : X → {{q} | q ∈ Q}.
I Example 15. It is not difficult to check that the automaton ALR from Example 6 is a
quasi-model for rewrite system in Example 1.

I Example 16. We consider the automaton AS from Example 7. We write (a, b, c)→ d if
d ∈ [`, α] when α(x) = {a}, α(y) = {b}, α(z) = {c}. Then for [`, α] we have:

(0, 0, 2)→ 1 (2, 2, 3)→ 3 (2, 3, 3)→ 3 (3, 2, 3)→ 3 (3, 3, 3)→ 3
(0, 0, 3)→ 1 (2, 2, 3)→ 4 (2, 3, 3)→ 4 (3, 2, 3)→ 4 (3, 3, 3)→ 4
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4 Non-termination using Regular Languages

The interpretation [r, α] has all the above and additionally:

(0, 2, 2)→ 3 (1, 1, 0)→ 3 (2, 2, 2)→ 3
(0, 2, 3)→ 3 (2, 2, 2)→ 4
(0, 3, 3)→ 3

As a consequence AS is a quasi-model for the S-rule.
The following theorem is immediate:

I Theorem 17. Let A = 〈Q,Σ, F, δ 〉 be a tree automaton and R a term rewriting system
over Σ. If A is a quasi-model for R then the language of A is closed under rewriting. J

5 Ensuring Redex Occurrences

Next, we want to guarantee that every term in the language L(A) of an automaton A contains
a redex with respect to the term rewriting system R. For left-linear systems R, this problem
can be reduced to deciding the inclusion of regular languages.

Let R be a left-linear term rewriting system. Then the set of ground terms containing
a redex is a regular tree language. A deterministic automaton B for this language can be
constructed using the overlap-closure of subterms of left-hand sides, see further [6, 7].
I Example 18. The following tree automaton C = 〈Q,Σ, F,→〉 accepts the language of
ground terms that contain a redex occurrence with respect to the S-rule. Here Q = {0, 1, 2, 3},
Σ = {ap,S}, F = {3} and
→S 0 (0, q)→ap 1 (1, q)→ap 2 (2, q)→ap 3 (3, q)→ap 3 (q, 3)→ap 3

for all q ∈ {0, 1, 2}.
As a consequence the problem of checking whether every term in L(A) contains a redex

boils down to checking that L(A) ⊆ L(B). For non-deterministic A and deterministic B,
this property can be decided by constructing the product automaton and considering the
reachable states.
I Definition 19. The product A·B of tree automata A = 〈Q,Σ, F, δ 〉 and B = 〈Q′,Σ, F ′, δ′ 〉
is the automaton C = 〈Q × Q′,Σ,∅, γ 〉 where for every f ∈ Σ of arity n, we define the
transition relation γf ⊆ (Q×Q′)n × (Q×Q′) by

〈 (q1, p1), . . . , (qn, pn) 〉 γ (q′, p′) ⇐⇒ 〈 q1, . . . , qn 〉 δf q
′ ∧ 〈 p1, . . . , pn 〉 δ′f p′

I Definition 20. The set of reachable states of a tree automaton A = 〈Q,Σ, F, δ 〉 is the
smallest set S ⊆ Q such that q ∈ S whenever 〈 q1, . . . , qn 〉 δf q for some q1, . . . , qn ∈ S and
f ∈ Σ with arity n.

The following theorem gives a method for checking L(A) ⊆ L(B) without the need for
determinising A (only B needs to be deterministic).
I Theorem 21. Let A = 〈Q,Σ, F, δ 〉 and B = 〈Q′,Σ, F ′, δ′ 〉 be tree automata such that B
is deterministic. Let S be the set of reachable states of the product automaton A ·B. Then
L(A) ⊆ L(B) if and only if for all (q, p) ∈ S it holds that q ∈ F =⇒ p ∈ F ′.
I Example 22. The reachable states of product automaton AS ·C of the automata AS from
Example 7 and C from Example 18 are (0, 0), (1, 1), (2, 2), (2, 1), (3, 3), (3, 2), (2, 3), (4, 3). The
only state (q, q′) such that q is accepting in AS is (4, 3) and 3 is an accepting state of C.
Thus the conditions of Theorem 21 are fulfilled and hence L(AS) ⊆ L(C). Thus every term
accepted by AS contains a redex.
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6 Future Work

We plan to investigate whether the method described in this paper can be fruitfully extended
from regular automata to pushdown automata, that is, context-free languages. For this
purpose, it is important that it is decidable whether a context-free language is a subset of a
regular language (the language of terms containing left-linear redex occurrences). However,
it remains to be investigated whether context-free certificates can be found efficiently.
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Abstract
We prove the termination of the string rewriting system Endrullis-08, the termination of infinitely
many related systems, and even the termination of their union, an infinite string rewriting system.
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1 Endrullis’s Problem

Jörg Endrullis raised the question whether the two-rule string rewriting system (SRS) {aabb→
bbba, ba→ aaaa} terminates. This SRS was included in the Termination Competition 2006
as SRS/Endrullis/08.srs and was later renamed to tpdb-8.0/TRS/Mixed_SRS/08.xml.
Chris Sternagel and René Thiemann have in 2011 succeeded in proving the termination of
Endrullis-08.1 They use the dependency pair framework with arctic matrices of dimension 3
and semantic labelling. A similar proof was done by APROVE in December of 2013.2 This
proof uses the dependeny pair framework with semantic labelling. In this contribution, we
give a different proof. In order to simplify the presentation, let us switch to the reflected
image {bbaa→ abbb, ab→ aaaa} of Endrullis’s SRS.

2 The Termination Proof

Consider systems {bbaa → abbb, ab → ai} for various i ∈ N0. If i ≤ 2 then we have
termination, as shown by a length-then-lexicographic argument where b > a. If i ∈ {3, 5}
then there is a loop of length 9 starting from b6a2. If i ≥ 7 is odd then there is a loop
of length 11+i

2 starting from b6a2. This leaves the case where i ≥ 4 is even. It turns out
that the proof can be done uniformly for all even i ≥ 4. Not only can we prove that each
{bbaa→ abbb, ab→ ai} terminates, but also that their union terminates:

I Theorem 1. The infinite SRS {bbaa→ abbb} ∪ {ab→ ai | i ≥ 2 is even} terminates.

I Corollary 2. The SRS {bbaa → abbb, ab → ai} terminates if, and only if, i = 1 or i is
even.

In the remainder of this contribution, we prove Theorem 1 by reducing the uniform termination
problem of E := {bbaa→ abbb} ∪ {ab→ ai | i ≥ 2 is even} in six steps (Lemmas 3, . . . , 8).

∗ Partially supported by Fakultät Informatik, Mathematik und Naturwissenschaften, HTWK Leipzig,
Germany.

1 http://cl-informatik.uibk.ac.at/software/ceta/experiments/semlab/with_semlab/
___Users___rene___tpdb-8.0___TRS___Mixed_SRS___08ẋml/proof.xml.xml

2 http://termcomp.uibk.ac.at/termcomp/competition/resultDetail.seam?resultId=480566&cid=68
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2 A Solution to Endrullis-08 and Similar Problems

First Step: Interreduction

Interreduction means rewriting the right hand sides of a rewrite system. The set of descendants
of the string ab3 by the SRS R := {ab → ai | i ≥ 2 is even} is {ab3, aib2, ai+1b, ai | i ≥
0 even}. Define the SRS F by

F := {b2a2 → r | r ∈ {ab3, aib2, ai+1b, ai}, i ≥ 0 even} .

I Lemma 3. If F terminates then E terminates.

Proof. We have →F→R ⊆ →F ∪ →R→F , where the non-overlapping case commutes, and
where the overlapping case either degenerates to a rewrite step on the contractum, e.g. for
even i ≥ 0,

b2a2 →F ab3 →R aib2 for which b2a2 →F aib2,

or it commutes: for even i ≥ 2 and even j ≥ 0,

b2a2b→F aib→R ai+j−1 for which b2a2b→R b2aj+1 →F ai+j−1 .

By a result of Doornbos and von Karger [2], if both R and F terminate and →F →R ⊆
→R(→F ∪→R)∗ ∪→F , then R ∪ F terminates. By construction, →E ⊆ →R ∪→F , so if F

terminates then E terminates. J

Second Step: Encompassment

We encompass each rule of F in a left context of the form bam, m ∈ N0 and a right context
of the form bna, n ∈ N0. This yields the SRS

G := {bamb2a2bna→ r | r ∈ {bam+1bn+3a, bam+ibn+2a, bam+i+1bn+1a, bam+ibna},
i ≥ 2 is even, m, n ∈ N0} .

I Lemma 4. If G terminates then F terminates.

Proof. For all s ∈ {a, b}∗, we have: G admits a non-terminating derivation starting from
bsa if, and only if, F admits a non-terminating derivation starting from s. J

Third Step: Semantic Labelling

Let the interpretation [s] : D → D of a string s on the domain D = {0, 1} × {0, 1, 2} be
defined by

[a](x, y) =
{

(x, 2), if y = 1,

(x, 1), else;
[b](x) =

{
(0, 0), if x = 1 and y = 0,

(1, 0), else.

For all n > 0, we get

[bna](x, y) =
{

(0, 0), if n is even,

(1, 0), else.

For all m > 0, n > 0 we get [ambna](x, y) = (x′, y′) where

x′ =
{

0, if n is even,

1, else
and y′ =

{
2, if m is even,

1, else.
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Case 1: m odd, n odd: `1 = b01ambb12a2bn−1bxy′a, r1 = b02am+1bn+2bxy′a,

r′1 = b11am+ibn+1bxy′a, r′′1 = b02am+i+1bnbxy′a, r′′′1 = b11am+ibn−1bxy′a .

Case 2: m = 0, n odd: `2 = b2b12a2bn−1bxy′a, r2 = b01abn+2bxy′a,

r′2 = b12aibn+1bxy′a, r′′2 = b01ai+1bnbxy′a, r′′′2 = b12aibn−1bxy′a .

Case 3: m > 0 even, n odd: `3 = b02ambb12a2bn−1bxy′a, r3 = b01am+1bn+2bxy′a,

r′3 = b12am+ibn+1bxy′a, r′′3 = b01am+i+1bnbxy′a, r′′′3 = b12am+ibn−1bxy′a .

Case 4: m odd, n = 0: `4 = b01ambbxy′a
3, r4 = b12am+1b2bxy′a,

r′4 = b01am+ibbxy′a, r′′4 = b12am+i+1bxy′a, r′′′4 = bxy′′a
m+i+1 .

Case 5: m odd, n > 0 even: `5 = b01ambb02a2bn−1bxy′a, r5 = b12am+1bn+2bxy′a,

r′5 = b01am+ibn+1bxy′a, r′′5 = b12am+i+1bnbxy′a, r′′′5 = b01am+ibn−1bxy′a .

Case 6: m = 0, n = 0: `6 = b2bxy′a
3, r6 = b11ab2bxy′a,

r′6 = b02aibbxy′a, r′′6 = b11ai+1bxy′a, r′′′6 = bxy′a
i+1 .

Case 7: m = 0, n > 0 even: `7 = b2b02a2bn−1bxy′a, r7 = b11abn+2bxy′a,

r′7 = b02aibn+1bxy′a, r′′7 = b11ai+1bnbxy′a, r′′′7 = b02aibn−1bxy′a .

Case 8: m > 0 even, n = 0: `8 = b02ambbxy′a
3, r8 = b11am+1b2bxy′a,

r′8 = b02am+ibbxy′a, r′′8 = b11am+i+1bxy′a, r′′′8 = bxy′a
m+i+1 .

Case 9: m > 0 even, n > 0 even: `9 = b02ambb02a2bn−1bxy′a, r9 = b11am+1bn+2bxy′a,

r′9 = b02am+ibn+1bxy′a, r′′9 = b11am+i+1bnbxy′a, r′′′9 = b02am+ibn−1bxy′a .

Table 1 The constituents of the SRS H

The interpretation is a model: Every left hand side and every right hand side have a prefix
of the form bna where n is odd. Hence [`](x, y) = (1, 0) = [r](x, y) holds for every (x, y) ∈ D
and rule `→ r.

We apply a Semantic Labelling [3] to G. We label only b symbols, and we label b by (x, y)
only if y 6= 0. In effect this means that in each sequence of successive b symbols, only the
rightmost b symbol receives a label. The symbol b labelled by (x, y) is denoted bxy. Let H

denote the resulting labelled SRS.
In order to compute the labels, we perform a case analysis on whether m = 0, m > 0

is even, or m is odd, and whether n = 0, n > 0 is even, or n is odd. For each case c, we
get a family Hc := {`c → rc, `c → r′c, `c → r′′c , `c → r′′′c } of labelled rules, indexed by even
i ≥ 2, m, n ∈ N0, x ∈ {0, 1}, y ∈ {0, 1, 2}. Table 1 shows the labelled strings `c, rc, r′c, r′′c , r′′′c

in the nine cases c. We use the abbreviations (x, y′) = [a](x, y), (x, y′′) = [a](x, y′). Note
that y′, y′′ ∈ {1, 2} and so that [a](x, y′′) = (x, y′) and [b](x, y′) = [b](x, y′′) = (1, 0). Note
also that y = 0 and y = 2 yield the same labelled rule because the rightmost symbol in each
left and right hand side is a.

Zantema’s Theorem yields:

I Lemma 5. If H terminates then G terminates.
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4 A Solution to Endrullis-08 and Similar Problems

Fourth Step: Interpretation

In the remaining steps, we prove termination of the labelled SRS, H. We do so incrementally,
using the concept of Relative Termination [1]. R is called terminating relative to S if there
is no infinite R ∪ S derivation that contains infinitely many R steps. If S terminates and
R terminates relative to S then R ∪ S terminates. Termination of R relative to S can be
proven by a quasiorder & such that →R ⊆ > and →S ⊆ ∼.

For the fourth step let H ′ := H1 ∪ {`4 → r′′′4 | (x, y′) ∈ {(1, 2), (0, 1)}.

I Lemma 6. H ′ terminates relative to H \H ′.

Proof. We use an interpretation that counts the number of b12 and b01 symbols. All rules in
H ′ decrease this number by 2, and all rules in H \H ′ keep it constant. J

Fifth Step: Tuple Representation

Termination of H \H ′ remains to be proved. The rules in H \H ′ keep the number of b12
and b01 symbols constant. This suggests one to apply some lexicographic order on a tuple
representation of the rules, where the symbols b12 and b01 act as separators.

Instead of the tuple representation, we prefer a modified tuple representation: The
Modified Tuple Representation Tf (s) of s ∈ Σ∗ through the interpretation f w.r.t. a non-
empty set ∆ ⊆ Σ of separator symbols is defined by

Tf (s) = (f(s0t0), f(s1t1), . . . , f(sk−1tk−1), f(sk)),

provided that k ≥ 0, s = s0t0s1t1 . . . sk−1tk−1sk, si ∈ (Σ \∆)∗ for all i ∈ {0, . . . , k}, and
ti ∈ ∆ for all i ∈ {0, . . . , k − 1}. The point of this modification is to keep the separators ti

accessible to the interpretation f .
For the fifth step let

H ′′ := H2 ∪H3 ∪ {`4 → r′′′4 | (x, y′) ∈ {(1, 1), (0, 2)}} ∪
{`4 → r4, `4 → r′′4 , `5 → r5 | (x, y′) ∈ D} ∪
{`c → r′′c , `c → r′′′c | 5 ≤ c ≤ 9, (x, y′) ∈ D} .

I Lemma 7. H ′′ terminates relative to H \ (H ′ ∪H ′′).

Proof. For our purposes, we define the interpretation f by f(s) = |s|b∗ − |s|b11 + |s|b01 . Here
|s|b∗ means the number of b symbols, without a label or with whatever label, in the string s.
Note that |s|b∗ − |s|b11 ≥ 0 holds, whence f(s) ∈ N0, for all strings s.

We compare the Modified Tuple Representations through f lexicographically from left to
right, denoted by >lex. For instance, rule `4 → r′′′4 in the case x = 1, y′ = 1 satisfies

Tf (`4) = (f(b01), f(ambb11a3)) = (2, 1) >lex (1, 0) = (f(b12), f(am+i+1)) = Tf (r′′′4 ) .

For rule `4 → r′′′4 in the case x = 0, y′ = 2 we get

Tf (`4) = (f(b01), f(ambb02a3)) = (2, 2) >lex (2, 0) = (f(b01), f(am+i+1)) = Tf (r′′′4 ) .

Thus we have solved the two remaining instances of rule `4 → r′′′4 .
The remaining rules have a suffix in bxy′a

+ both at the left hand side and at the right
hand side. For the remainder of this proof, we can simplify our argument by dropping this
suffix since our order is closed under right contexts and is insensitive to the number of a

symbols.
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Case c 2 3 4 5 6 7 8 9
Tf (`c) (3, n− 1) (3, n− 1) (2, 1) (2, n + 1) (2) (n + 2) (2) (n + 2)
Tf (rc) (2, n + 2) (2, n + 2) (1, 2) (1, n + 2) (2) (n + 2) (2) (n + 2)
Tf (r′c) (1, n + 1) (1, n + 1) (2, 1) (2, n + 1) (2) (n + 2) (2) (n + 2)
Tf (r′′c ) (2, n) (2, n) (1, 0) (1, n) (0) (n) (0) (n)
Tf (r′′′c ) (1, n− 1) (1, n− 1) - (2, n− 1) (0) (n) (0) (n)

Table 2 The Modified Tuple Representations through f

Table 2 summarizes the Tf (s) for the left hand sides and the various corresponding right
hand sides of the rewrite rules. Each right hand side tuple that equals its left hand side tuple
is boxed. Check that a right hand side tuple that is not boxed is less w.r.t. >lex than its left
hand side tuple. J

Sixth Step: Recursive Path Order

I Lemma 8. H \ (H ′ ∪H ′′) terminates.

Proof. The SRS H \ (H ′ ∪H ′′) is ordered by a Recursive Path Order, where all symbols
in {b, b01, b02, b12} are equivalent in precedence, and each symbol from this set is greater in
precedence than any of b11 and a. J

Acknowledgements I wish to thank Johannes Waldmann for presenting this challenge to
me and for proof-reading the manuscript. Carsten Fuhs kindly pointed to Sternagel and
Thiemann’s proof.
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Abstract
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1 Criterion H

In his dissertation [4], Winfried Kurth implemented a suite of criteria for the termination of
single-rule string rewriting systems (SRSs). In the meantime, each of his Criteria A to G
is covered by new termination criteria [5, 6, 7, 1]. Senizergues [9], Kobayashi et al. [3, 10],
Moczydlowski and Geser [8], and Hofbauer, Waldmann, and Zantema [2, 12] have introduced
further criteria. Criterion H has not yet been covered. We give a criterion that is slightly
more powerful than Kurth’s Criterion H and show that it can be translated into a proof by
Semantic Labelling.

Let p(k) := max{0, k − 1} denote the total predecessor on N0.

I Definition 1 ([4, Definition 4.39]). Functions µ : N∗0 → Z∗ and µ̂ : N∗0 → N∗0 are defined by

µ((k1, . . . , kn)) = (k1 − 1, k1 + k2 − 2, k1 + k2 + k3 − 3, . . . , k1 + · · ·+ kn − n)

and by µ̂((k1, . . . , kn)) = (m1,m2, . . . ,mn) where themi are defined recursively bym1 = p(k1)
and mi = p(mi−1 + ki) for all 2 ≤ i ≤ n.

If µ(τ) ∈ N∗0 then µ̂(τ) = µ(τ).
Let the alphabet {a, b} be given. Let |s|c denote the number of occurrences of the

letter c ∈ {a, b} in the string s. The tuple representation T (w) of a string w is defined by
T (w) = (k0, k1, k2, . . . , kn) if w = ak0bak1bak2 . . . bakn , k0, . . . , kn ∈ N0.

For τ, τ ′ ∈ N∗0, let τ >mult τ
′ denote the multiset extension of the order on N0, applied to

the multiset of τ and the multiset of τ ′. Let ≥mult denote >mult ∪=.

I Theorem 2 (Criterion H [4, Satz 4.40]). The SRS (R, {a, b}) terminates if the following
conditions hold for every rule (`→ r) ∈ R:
1. |r|a > 0 and |r|b > 0;
2. |`|a − |`|b ≥ |r|a − |r|b;

∗ Partially supported by Fakultät Informatik, Mathematik und Naturwissenschaften, HTWK Leipzig,
Germany.
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2 Kurth’s Criterion H Revisited

3. µ(T (`)) ∈ N∗0 and µ(T (r)) ∈ N∗0;
4. µ(T (`)) >mult µ(T (r)).
For instance, the SRS aaba→ abaab satisfies Criterion H and hence terminates [4, Satz 4.44].
Kurth states Theorem 2 only for the single-rule case, but his proof works in the general case:
he shows µ̂(T (s`t)) >mult µ̂(T (srt)) for all s, t ∈ {a, b}∗.

For s = a1a2 . . . an let s̄ = an . . . a2a1. For an SRS R, let R̄ = {¯̀→ r̄ | (` → r) ∈ R}.
We refer to the map s 7→ s̄ as string reflection. Given an SRS (R,Σ) where Σ may differ
from {a, b}, and two non-empty sets X,Y ⊆ Σ such that X ∩ Y = ∅, let the projection
h : Σ∗ → {a, b}∗ be defined by h(c) = a if c ∈ X, h(c) = b if c ∈ Y , and h(c) = ε if
c ∈ Σ \ (X ∪ Y ). Let h(R) = {h(`) → h(r) | (` → r) ∈ R}. Kurth uses string reflection
and projection as preprocessing steps in combination with Criterion H. For the purpose of a
simple presentation, we drop these preprocessing steps for the time being.

2 Technical Stuff

We give a few definitions and basic results in order to state a stronger version of Theorem 2.

I Definition 3. For each x ∈ N0, let µ̂x : N∗0 → N∗0 be defined by µ̂x((k1, . . . , kn)) =
(m1,m2, . . . ,mn) where the mi are defined recursively by m1 = p(x+k1) and mi = p(mi−1 +
ki) for all 2 ≤ i ≤ n.

By definition, µ̂0 = µ̂.
Let last((k1, . . . , kn)) = kn. For n ∈ N0, p1, . . . , pn, x ∈ Z let (p1, . . . , pn) + x denote

(p1 +x, . . . , pn+x). Let xcrit(τ) := max{0,−m1,−m2, . . . ,−mn} where (m1,m2, . . . ,mn) =
µ(τ). By definition, xcrit(τ) is the least x ∈ N0 such that µ(τ) + x ∈ N∗0. Let ≥∗ denote
the pointwise order on Z∗, i.e. (p1, . . . , pm) ≥∗ (q1, . . . , qn) iff m = n and pi ≥ qi for all
1 ≤ i ≤ n.

I Lemma 4. For all σ, τ ∈ N∗0 and x, y ∈ N0:
1. if y ≥ x then µ̂y(τ) ≥∗ µ̂x(τ);
2. if y ≥ x then µ̂x(τ) + (y − x) ≥∗ µ̂y(τ);
3. if x ≥ xcrit(τ) then µ̂x(τ) = µ(τ) + x;
4. µ̂x(τ) ≥∗ µ(τ) + x;
5. if µ̂xcrit(σ)(σ) >mult µ̂xcrit(σ)(τ) then µ̂x(σ) >mult µ̂x(τ) for all x ≥ xcrit(σ);
6. if last(µ̂xcrit(σ)(σ)) ≥ last(µ̂xcrit(σ)(τ)) then last(µ̂x(σ)) ≥ last(µ̂x(τ)) for all x ≥ xcrit(σ).

Proof. Claim 1: Let y ≥ x, τ = (k1, . . . , kn), µ̂y(τ) = (q1, . . . , qn), µ̂x(τ) = (p1, . . . , pn).
Then q1 = p(y + k1), qi = p(qi−1 + ki) for all 2 ≤ i ≤ n, p1 = p(x+ k1), pi = p(pi−1 + ki) for
all 2 ≤ i ≤ n. We show that qi ≥ pi for all 1 ≤ i ≤ n by induction on i. Case i = 1: Then
q1 = p(y + k1) ≥ p(x+ k1) = p1. Case i > 1: By inductive hypothesis, qi−1 ≥ pi−1. Then
qi = p(qi−1 + ki) ≥ p(pi−1 + ki) = qi.

Claim 2 and Claim 3 are proven in a similar way.
Claim 4: µ̂x(τ) ≥∗ µ̂y(τ) + (x− y) = (µ(τ) + y) + (x− y) = µ(τ) + x where y := xcrit(τ).
Claim 5: Let y = xcrit(σ). By Claim 3, the premise, and Claim 2 we get µ̂x(σ) =

µ(σ) + x = µ̂y(σ) + (x− y) >mult µ̂y(τ) + (x− y) ≥∗ µ̂x(τ). Note here that σ ≥∗ τ implies
σ ≥mult τ for all σ, τ ∈ N∗0.

Claim 6: By Claim 3, the premise, and Claim 2 we get last(µ̂x(σ)) = last(µ(σ)) + x =
last(µ̂y(σ)) + (x− y) ≥ last(µ̂y(τ)) + (x− y) ≥ last(µ̂x(τ)). J

Let & denote concatenation on N∗0.
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I Lemma 5. 1. µ̂x(T (as)) = µ̂x+1(T (s)) for all s ∈ {a, b}∗;
2. µ̂x(T (bs)) = (p(x))&µ̂p(x)(T (s)) for all s ∈ {a, b}∗;
3. For all s ∈ {a, b}∗, if µ̂x(T (s)) = (p1, . . . , pn−1, pn) then µ̂x(T (sa)) = (p1, . . . , pn−1, pn−1+

last(T (s)));
4. For all s ∈ {a, b}∗, if µ̂x(T (s)) = (p1, . . . , pn) then µ̂x(T (sb)) = (p1, . . . , pn, p(pn)).

Proof. Claim 1: Let T (s) = (k1, k2, . . . , kn), µ̂x(T (as)) = (q1, . . . , qn), and µ̂x+1(T (s)) =
(p1, . . . , pn). We have T (as) = (k1 + 1, k2, . . . , kn), q1 = p(x+ k1 + 1), qi = p(qi−1 + ki) for
2 ≤ i ≤ n, p1 = p(x+ k1 + 1), pi = p(pi−1 + ki) for 2 ≤ i ≤ n. By induction on i, one proves
qi = pi for all 1 ≤ i ≤ n.

Claims 2, 3, and 4 are proven in a similar way. J

3 An Improvement

For s, t ∈ {a, b}∗ let s >G t if

last(µ̂x(T (sa))) ≥ last(µ̂x(T (ta))) and µ̂x(T (s)) >mult µ̂x(T (t)) for all x ∈ N0.

Let a reduction order be a well-founded and transitive binary relation on strings that is
closed under left and right contexts.

I Theorem 6. >G is a reduction order on {a, b}∗.

Proof. Transitivity of >G follows from transitivity of both ≥ and >mult. Well-foundedness
of >G follows from well-foundedness of >mult. Closure under left and right contexts re-
mains to be proved. To this end, let s >G t, which is last(µ̂x(T (sa))) ≥ last(µ̂x(T (ta)))
and µ̂x(T (s)) >mult µ̂x(T (t)) for all x ∈ N0. We claim as >G at. We have last(µ̂x(T (asa))) =
last(µ̂x+1(T (sa))) ≥ last(µ̂x+1(T (ta))) = last(µ̂x(T (ata))) and µ̂x(T (as)) = µ̂x+1(T (s)) >mult
µ̂x+1(T (t)) = µ̂x(T (at)) by Lemma 5(1) and the premise. Next we claim bs >G bt.
Then last(µ̂x(T (bsa))) = last(µ̂p(x)(T (sa))) ≥ last(µ̂p(x)(T (ta))) = last(µ̂x(T (bta))). Next,
µ̂x(T (bs)) = (p(x))&µ̂p(x)(T (s)) >mult (p(x))&µ̂p(x)(T (t)) = µ̂x(T (bt)) by Lemma 5(2)
and the premise. For the proof of claim sa >G ta, let µ̂x(T (sa)) = (p1, . . . , pm), let
µ̂x(T (ta)) = (q1, . . . , qn), and let k = last(T (sa)) ≥ 1 and k′ = last(T (ta)) ≥ 1. We have
last(µ̂x(T (sa))) = pm + 1 ≥ qn + 1 = last(µ̂x(T (ta))), by Lemma 5(3) and the premise. By
premise, µ̂x(T (s)) = (p1, . . . , pm−1, pm−1+k−1) >mult (q1, . . . , qn−1, qn−1+k′−1) = µ̂x(T (t)).
With that, µ̂x(T (sa)) = (p1, . . . , pm−1, pm−1 +k) >mult (q1, . . . , qn−1, qn−1 +k′) = µ̂x(T (ta)).
Finally, we claim sb >G tb. Let µ̂x+1(T (sa)) = (p1, . . . , pm) and µ̂x(T (ta)) = (q1, . . . , qn).
Then last(µ̂x(T (sba))) = p(p(pm)) + 1 ≥ p(p(qn)) + 1 = last(µ̂x(T (tba))) and µ̂x(T (sb)) =
(p1, . . . , pm, p(p(pm))) >mult (q1, . . . , qn, p(p(pn))) ≥mult (q1, . . . , qn, p(p(qn))) = µ̂x(T (tb)).

J

Lemmas 4(4), 4(5) and Theorem 6 prove:

I Theorem 7. The SRS (R, {a, b}) terminates if the following conditions hold for every rule
(`→ r) ∈ R:
1. last(µ̂x(T (`a))) ≥ last(µ̂x(T (ra))) for all x ≤ xcrit(T (`));
2. µ̂x(T (`)) >mult µ̂x(T (r)) for all x ≤ xcrit(T (`)).

I Theorem 8. The premises of Theorem 7 hold whenever the premises of Theorem 2 hold.
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Proof. Let (` → r) ∈ R where `, r ∈ {a, b}∗, and let (1) |r|a > 0 and |r|b > 0; (2)
|`|X − |`|Y ≥ |r|X − |r|Y ; (3) µ(T (`)) ∈ N∗0 and µ(T (r)) ∈ N∗0; (4) µ(T (`)) >mult µ(T (r)).
By (3) we have xcrit(T (`a)) = 0. By (2) then, last(µ̂0(T (`a))) = last(µ(T (`a))) = |`|a −
|`|b ≥ |r|a − |r|b = last(µ(T (ra))) = last(µ̂0(T (ra))) which proves Premise 1. By (4),
µ̂0(T (`)) = µ(T (`)) >mult µ(T (r)) = µ̂0(T (r)), which proves Premise 2. J

The following examples show that the improvement is strict, even if we allow preprocessing
steps reflection and projection.

I Example 9. The SRS baababaab→ abaabbaabab, after preprocessing, satisfies the premises
of Theorem 7 but not those of Theorem 2. Check that T (¯̀) = (0, 2, 1, 2, 0), T (r̄) =
(0, 1, 2, 0, 2, 1). We get

µ̂0(T (¯̀)) = (0, 1, 1, 2, 1) 6= (−1, 0, 0, 1, 0) = µ(T (¯̀)) and
µ̂0(T (r̄)) = (0, 0, 1, 0, 1, 1) 6= (−1,−1, 0,−1, 0, 0) = µ(T (r̄));
µ̂1(T (¯̀)) = (0, 1, 1, 2, 1) = µ(T (¯̀)) + 1 and
µ̂1(T (r̄)) = (0, 0, 1, 0, 1, 1) = µ(T (r̄)) + 1 .

I Example 10. The SRS abaaabba→ abbababaaab satisfies, after preprocessing, the premises
of Theorem 7 but not those of Theorem 2. Check that T (`) = (1, 3, 0, 1) and T (r) =
(1, 0, 1, 1, 3, 0). We get

µ̂0(T (`)) = (0, 2, 1, 1) = µ(T (`)),
µ̂0(T (r)) = (0, 0, 0, 0, 2, 1) 6= (0,−1,−1,−1, 1, 0) = µ(T (r)).

These two examples and the SRS abccabca → abcacabccab are the only SRSs ` → r with
|r| ≤ 11 that satisfy the premises of Theorem 7 after preprocessing, but satisfy neither
Theorem 2 after preprocessing, nor any of the above-mentioned improvements of Kurth’s
Criteria A to G. In contrast, 16 SRSs with |r| = 11 satisfy Theorem 2, too.

4 Semantic Labelling

There is an interesting connection between Theorem 7 and Semantic Labelling [11]. For
s ∈ {a, b}∗, let the interpretation [s] : N∗0 → N∗0 be defined by [a](x) = x+1 and [b](x) = p(x).
The reflected strings are semantically labelled. Symbol a receives no label; symbol b receives
p(x) as its label where x is the interpretation value. For convenience, let labx(s) denote
labx(s̄), which is s reflected, labelled, and reflected again. The tuple of labels of b symbols is
extracted by a string homomorphism h : ({a, b} × N0)∗ → N∗0 that is defined by h(ax) = ε

and h(bx) = (x).

I Lemma 11. For all s ∈ {a, b}∗, x ∈ N0:
1. [s̄](x) = last(µ̂x(T (sa)));
2. h(labx(sb)) = µ̂x(T (s)).

Proof. The proof of Claim 1 is a straightforward induction on |s|. Claim 2 is shown by
induction on |s|. Case s = ε. Then h(labx(b)) = h(bp(x)) = (p(x)) = µ̂x((0)) = µ̂x(T (ε)).
Case s = as′. Then h(labx(as′b)) = h(a lab[a](x)(s′b)) = h(labx+1(s′b)) = µ̂x+1(T (s′b)) =
µ̂x(T (as′b)) by Lemma 5(1). Case s = as′. Then h(labx(bs′b)) = h(bp(x) lab[b](x)(s′b)) =
(p(x))&h(labp(x)(s′b)) = (p(x))&µ̂x(T (bs′b)) = µ̂x(T (bs′b)) by the inductive hypothesis and
Lemma 5(2). J
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I Example 12. h(labx(aabab)) = h(axax+1bx+2ax+1bx+2) = (x+2, x+2) and h(labx(abaabb)) =
h(axbx+1axax+1bx+2bx+1) = (x+ 1, x+ 2, x+ 1).

A proof of termination of R by Theorem 7 can be turned into a proof by Semantic
Labelling in the following way:

I Theorem 13. For a SRS (R, {a, b}) let R′ = {`aib→ raib | (`→ r) ∈ R, i ∈ N0}.
1. If Condition 1 of Theorem 7 holds then [] is a quasi-model of R′.
2. If Condition 2 of Theorem 7 holds then labx(R′) is ordered by the reduction order >mult

on N∗0.
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Abstract
This extended abstract discusses the problem of defining quasi-orders that are suitable for use
with network rewriting. The author’s primary interest is in using network rewriting as a tool for
equational reasoning in algebraic theories with both operations and co-operations.
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1 Introduction

Network rewriting [1] is a kind of graph rewriting; networks are directed acyclic graph with
some extra structure—roughly the same extra structure as makes terms out of trees, but
completely symmetric with respect to input and output. This allows networks to be viewed
as expressions, so that on one hand one can use networks as an alternative notation where
ordinary terms do not quite suffice, and on the other one can take a network and evaluate it
with rather arbitrary interpretations of the symbols. This latter approach turns out to be
convenient for defining orders on networks.

Formally, a network is a directed acyclic graph (DAG) with the following extra data.
(i) There are two distinguished vertices 0 and 1 that represent the output and input respect-
ively sides of the network; edges from 1 are input legs of the network, and edges to 0 are
output legs of the network. (ii) Each inner vertex (those other than 0 or 1) is decorated
with a symbol from a doubly ranked alphabet. If the symbol D(v) of vertex v has rank
(m,n), then the in-degree of v must be n (the arity) and the out-degree of v must be m (the
coarity). (iii) There is at each vertex a total ordering of the incoming edges, and a separate
total ordering of the outgoing edges. The arity of the network as a whole is the degree (all
outgoing) of the input vertex 1, and the coarity of the network as a whole is the degree (all
incoming) of the output vertex 0. By convention here, networks are drawn with all edges
oriented downwards, so no arrowheads need to be drawn in them.

The use of networks as expressions when ordinary terms do not suffice may be observed
in several specialities—physicists working with tensor fields (e.g. in General Relativity) may
use the Penrose [6] graphical notation to visualise the structure of a complex expression,
algebraicists studying Hopf algebras may use ‘diagram shorthand’ (see e.g. [4]) to do their
calculations, and quantum computer programming is very much a matter of building ‘arrays
of quantum gates’—all of which may be formalised as networks or minor variations thereof.
The common factor in these applications are operations that produce multiple results (in
the sense of a subroutine having several out-parameters, not in the sense of a multivalued
function). Much of what specialists in these fields do with their diagrams can be described
as informal network rewriting.

The abstract setting within which one may evaluate a network is that of an algebraic
structure known as a PROP [3, Ch. V]. This consists of a set of doubly ranked elements
(sometimes formalised as the set of all morphisms in a category whose objects are the
nonnegative integers; the domain of a morphism is then its arity and the codomain is its
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2 Ordering Networks

[ ]
→
[ ] [ ]

→
[ ] 




→







(a) Rule increasing
the number of vertices (b) Associativity rule (c) Associativity rule

in a context

Figure 1 Network rewrite rules (that can be troublesome to order)

coarity) together with two composition operations ◦ and ⊗, and a mapping φ of permutations
to PROP elements. One PROP that elegantly illustrates the syntactic constraints of the
PROP concept is that which takes as underlying set the set R•×• of all matrices over some
(semi)ring R: the arity is then the number of columns, the coarity is the number of rows,
the ◦ operation is matrix multiplication (not defined unless the arity of the left factor equal
the coarity of the right factor, just like composition of morphisms in a category), the image
of a permutation is the corresponding permutation matrix, and the ⊗ operation constructs

a larger matrix with the two operands as blocks, like A ⊗ B =
[
A 0
0 B

]
. PROPs also need

to satisfy a number of axioms, but it would take too long time to state those here; suffices
it to say that they are equivalent to the claim that networks can serve as expressions for
PROPs [1, Th. 5.17].

This last point may also be stated as the claim that the set of all networks (or rather
isomorphism classes of networks) on a given alphabet constitutes the free PROP with respect
to that alphabet. The ◦ operation then amounts to joining the outputs of the right operand
to the inputs of the left operand, whereas⊗ simply places the operands side-by-side, exposing
each input and output of either operand as an input or output of the combined network.
The network corresponding to a permutation σ consists only of edges from 1 to 0, the j’th
outgoing edge at 1 also being the σ(j)’th incoming edge at 0. Formalised this way, the
reason that an arity- and coarity-preserving function f from a doubly ranked set X to a
PROP P gives rise to an evaluation map evalf from the set of all networks on X to P is
that evalf is the unique morphism from the free PROP to P whose existence is guaranteed
by the universal property.

2 The biaffine PROP

One slightly nontrivial PROP is the biaffine PROP Baff(R), which can be defined over any
associative (semi)ring R with unit. The name can be understood as hinting at the fact that
the matrix PROP R•×• defined above can be described as a PROP of linear transformations.
If each PROP element in addition to the matrix part also gets a translation part, then one
could make a PROP of affine transformations (an element of arity n and coarity m maps
an n-dimensional space into an m-dimensional space). The biaffine PROP does that too,
but goes further to preserve the symmetry of input and output. A rank (m,n) element of
the biaffine PROP Baff(R) consists of four parts: an m× n matrix A, an m× 1 vector b, a
1 × n vector c, and a scalar d, wherein all elements are from the (semi)ring R. It is often
convenient to place these parts as blocks into an (m+ 2)× (n+ 2) matrix as follows




1 d c
0 1 0
0 b A


 (1)
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since the composition ◦ is then ordinary matrix multiplication. The image under φ of a
permutation has the matrix part A equal to the permutation matrix but the other three
parts zero. The ⊗ operation is given by




1 d1 c1
0 1 0
0 b1 A1


⊗




1 d2 c2
0 1 0
0 b2 A2


 :=




1 d1 + d2 c1 c2
0 1 0 0
0 b1 A1 0
0 b2 0 A2


 .

It is always technically possible to decompose a network into simpler networks using ◦
and ⊗, and through such a decomposition calculate its value in a particular PROP, but it is
often inconvenient to do so. In the biaffine PROP, it is fairly straightforward to evaluate a
network without that detour over ◦ and ⊗. To do this, each inner vertex v of the network
should first have been assigned a corresponding biaffine PROP element (usually the value of
the symbol at the vertex) with parts A(v), b(v), c(v), and d(v). Proceeding from input side
to output side (the converse is equally possible), one calculates for each edge (i) a row of an
intermediate A matrix, and (ii) an element of an intermediate b vector. Denote by A−(v)
the matrix obtained by stacking the rows assigned to the incoming edges at vertex v, in the
order of those edges at that vertex, and similarly denote by A+(v) the matrix obtained by
stacking the rows assigned to outgoing edges at that vertex. Then at the input vertex 1
initialise A+(1) = I and at each inner vertex v let A+(v) = A(v)A−(v); the matrix part of
the value of the network as a whole is then the A−(0) matrix of the output vertex 0. If one
similarly denotes by b−(v) and b+(v) respectively the vectors obtained by combining the
vector elements assigned to the incoming and outgoing edges at vertex v, then b+(1) = 0
and b+(v) = b(v) + A(v)b−(v) at each inner vertex v, with b−(0) being the b part of the
value of the network. The c and d parts of the value of the network as a whole are then

c =
∑

inner vertex v

c(v)A−(v), d =
∑

inner vertex v

(
d(v) + c(v)b−(v)

)
.

Yet another way to understand at least the biaffine PROP Baff(N) is as a generalised path-
counting device. Consider the element of Baff(N) to which a particular network evaluates.
In the matrix part A, element Ai,j then keeps track of the number of paths from input leg j
to output leg i. In the vector parts b and c, element bi keeps track of the number of paths
which begin somewhere inside the network and leave through output leg i whereas element
cj keeps track of the number of paths which enter through input leg j and end somewhere
inside the network, and the scalar part d keeps track of the number of paths which both
begin an end inside the network. It is easily checked that that the definitions of ◦, ⊗, and
permutations in Baff(N) are consistent with this interpretation. What makes it a generalised
path-counting device is that the PROP elements assigned to the individual vertices need not
reflect the number of paths in the actual DAG underlying the network.

3 Network rewriting and PROP orders

When formalising, and in particular automating,1 network rewriting, it becomes necessary
to somehow order the networks so that no rewrite cycles arise. Defining orders that take the
graph-theoretic structure of a network into account has however turned out to be surprisingly
difficult, so the point of this text is to summarise the solutions that the author has found,
and to point out some of the difficulties that one encounters.

1 See http://www.mdh.se/ukk/personal/maa/lhm03/sw/rewriting for one utility that does this.
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4 Ordering Networks

What is easy to do is to count vertices carrying a particular symbol, and order by that.
This corresponds quite directly to ordering by (weighted) degree of polynomial, but that
rarely gets one all the way, and there are even cases in which the intuitive rewrite direction
may cause the number of vertices to increase (Figure 1a).

Similarly counting edges is not at all straightforward, as illustrated in Figure 1b: one
may think that the purpose of this rewrite rule is to eliminate instances of a vertex as the
right child of another, and in a way it is, but one cannot state this goal simply as decreasing
the number of edges from the output of a vertex to the right input of another vertex.
Applying the rule of Figure 1b clearly consumes such an edge, but the catch is that it can
also create another such an edge, as shown in Figure 1c; the rule is being applied to the
bottom two vertices. The problem with ‘count two-vertex subgraphs of the form’ is that
this quantity does not change deterministically when a rule is placed in a context. It is
possible to get somewhere with this ordering idea, but it requires keeping track of more
than just the number of edges where the rule might apply, and in the end it turns out that
the construction can be expressed more succintly in terms of the biaffine PROP Baff(N).

A PROP quasi-order is a transitive and reflexive relation 6 on a PROP P such that
a1 6 a2 and b1 6 b2 implies a1 ◦ b1 6 a2 ◦ b2 (whenever those compositions are defined)
and a1 ⊗ b1 6 a2 ⊗ b2. The order is said to be strict if ◦ and ⊗ preserve strictness of
inequalities. Given any PROP with a strict PROP quasi-order, one can pull that order back
to the free PROP of networks via an evaluation map evalf , and thereby define a strict PROP
quasi-order on the networks. Because the direction of inequalities with respect to such an
order is preserved when using ◦ and ⊗ to embed a network as a subexpression of a larger
network, a network rewrite rule l→ r where r < l with respect to such an order will remain
consistently oriented no matter what context C it gets placed into, as it will follow that
C(r) < C(l). (Technically, in the case of the rewriting machinery of [1], it is also necessary
that the order has the strict uncut property [1, pp. 152–157], but that has so far never
emerged as an obstacle.)

What makes the biaffine PROP Baff(N) useful here is that the element-wise partial order
on it (standard matrix order, if one considers the block matrix form (1) for an element) is
a well-founded PROP quasi-order, and if one restricts to matrices with at least one positive
element in each row and each column (again as with respect to the block matrix form) then
this quasi-order will be strict. An assignment f that is useful for the rule in Figure 1b is

f
( )

=




1 0 0 1
0 1 0 0
0 0 1 1




(network has coarity 1 and arity 2, so the element
of Baff(N) it is mapped to must have that as well,
and with the padding of the block matrix form
that comes out as 3× 4)

making

evalf

([ ])
=




1 0 0 1 2
0 1 0 0 0
0 0 1 1 1


 >




1 0 0 1 1
0 1 0 0 0
0 0 1 1 1


 = evalf

([ ])
.

An assignment that is useful for the rule in Figure 1a is

g
( )

=




1 0 0 0
0 1 0 0
0 1 1 1


 , g

( )
=




1 0 0 0
0 1 0 0
0 1 1 1




T

as that will have the d part of evalg of the left hand side of Figure 1a come out as 1, but the
d part of evalg of the right hand side come out as 0, which suffices for a strict inequality; all
other parts come out equal.
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→












→







(a) Given rule (orientation of the equation itself) (b) First derived rule

Figure 2 Rewrite system based on the Yang–Baxter equation

The nice thing about using the biaffine PROP for ordering networks is that it turns out
to be very versatile. What is perhaps a bit worrying is that there seems to be few known
examples of going beyond the biaffine PROP. Lafont [2, p. 300] sets out with a seemingly
more general construction of an order, but upon closer examination it turns out that the
functions used must satisfy some additional condition in order for everything to fit together,
and if that condition is to be polynomials of degree at most one then we are back to a special
case of the biaffine PROP. The only example of a PROP order genuinely distinct from what
the biaffine PROP can produce that is known to the author is instead the connectivity PROP
of [1, Ex. 3.3], which embellishes the cyclomatic number of the underlying graph.

So far, neither of these have been of much use when completing the rewrite system
consisting of the rule in Figure 2a (this braid identity constitutes an abstract form of the
Yang–Baxter equation, and is mentioned as an example in e.g. [5]). In the case of the
biaffine PROP, choosing an order of the networks amounts to picking a value for the
vertices, i.e., to assign values to the elements of the corresponding (1) matrix; there are nine
elements whose values are not fixed, and these may be taken as variables parametrising the
space of binaffine PROP-based orderings of networks with only vertices. The claim that
a particular rule is oriented in a particular direction gives rise to a system of polynomial
inequalities in those nine variables. Considering only the rule of Figure 2a, that system has
a solution with strict inequality. Completion will however immediately proceed to derive
the rule in Figure 2b (by vertical symmetry of the first rule, either orientation of the derived
rule is possible), and if adding also the inequalities resulting from that comparison, there is
no longer a solution with strict inequality; the biaffine PROP fails to distinguish one side of
a rule as strictly larger than the other. Switching to Baff(R) for a more general semiring R
has been tried, but so far without much luck.
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Abstract
For string rewriting systems compatible with the standard Kachinuki ordering it is known that
their derivational complexity is primitive recursively bounded. However, in case the definition of
Kachinuki orderings comprises a possibly different lexicographic status for different letters, the
standard upper bound proof method by monotone interpretations into the natural numbers fails,
and primitive recursive complexity bounds are an open problem, to the best of our knowledge.
In this talk, such an upper bound result is shown by examining worst case rewriting strategies.
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1 Introduction

We assume familiarity with basic notations for string rewriting. Here, Σ∗ is the set of
strings over an alphabet Σ, |x| denotes the length of a string x, |x|a denotes the number of
occurrences of letter a in x, and ε is the empty string. A rewriting system R is compatible with
a relation > on Σ∗ if R ⊆ >, and Nf(>) denotes the set of normal forms modulo >. For a
given ordering > on a set A, let >C-lex denote the right-to-left length-lexicographic extension
of > to A∗, analogously define the left-to-right variant >B-lex. For x = c0 . . . cn ∈ Σ∗,
ci ∈ Σ, let xrev = cn . . . c0 denote the reversal of x, and for a rewriting system R define
Rrev = {`rev → rrev | `→ r ∈ R}. Presently, we consider only finite alphabets and rewriting
systems.

The derivation height of a string x modulo some finitely branching and well-founded
relation > on Σ∗ is dh>(x) = max{n | ∃y : x >n y}, and the derivational complexity of
> maps a natural number n to the maximal derivation height of strings of size at most n,
i. e., dc>(n) = max{dh>(x) | |x| ≤ n}. For a string rewriting system R let dhR and dcR

abbreviate dh→R
and dc→R

, respectively.

2 Kachinuki orderings

Throughout, we use � as an ordering on Σ, a so-called precedence. Since we consider chains
of maximal length, we assume � to be total. Further, each letter a ∈ Σ has an assigned
status s(a) ∈ {C,B}, either right-to-left (C) or left-to-right (B).

I Definition 1. The Kachinuki ordering with status function s on Σ∗ is defined by x �s y

provided one of the following holds, where a is the maximal letter modulo � occurring in x
or y:
|x|a > |y|a, or
|x|a = |y|a = n, x = x0ax1 . . . axn, y = y0ay1 . . . ayn for xi, yi ∈ (Σ \ {a})∗, and
(x0, x1, . . . , xn) �s(a)-lex

s (y0, y1, . . . , yn).
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2 On the derivational complexity of Kachinuki orderings

Varying the status function s, there are 2|Σ|−1 many different Kachinuki orderings, as is
easily seen, all of them being well-founded and closed under contexts. Let �C denote the
particular standard Kachinuki ordering where each letter has right-to-left status, cf. [7].

I Example 2. The rewriting system R0 = {ac → ca, cb → bc} is compatible with �s for
a � b � c and s(a) = C, s(b) = B. For this example, also the standard Kachinuki ordering
could be used as R0 ⊆ �C for a � c � b. In contrast, R1 = {ac→ cca, cb→ bcc} ⊆ �s (as
for R0), but both R1 and Rrev

1 are incompatible with �C, whatever precedence is chosen.

I Remark. Under the usual isomorphism between Σ∗ and the set of terms TΣ({x}) via
a0a1 . . . an 7→ a0(a1(. . . an(x) . . . )), with variable x and Σ be seen as a set of unary function
symbols, the Kachinuki ordering �C corresponds to the precedence based path ordering on
terms, i. e., the multiset path ordering without exploiting multisets. Therefore, if a finite
string rewriting system R is compatible with �C, then dcR is primitive recursively bounded,
and the relationship between the size of the underlying alphabet and the corresponding level
of the Grzegorczyk hierarchy for dcR is known, see [3, 4].
I Remark. The standard upper bound proof method by monotone interpretations into
the natural numbers fails for Kachinuki orderings since no such interpretation exists for
{cb→ bcc}, see [8]. Therefore, a monotone interpretation for system R1 (and also for Rrev

1 )
from Example 2 doesn’t exist.

Depending on the status function s, there is a simple order isomorphism λx.xC on Σ∗
such that, for x, y ∈ Σ∗ and arbitrary precedence �,

x �s y if, and only if, xC �C yC.

For a being the maximal letter modulo � occurring in x = x0a . . . axn with xi ∈ (Σ \ {a})∗,
define the straightening of x as xC = xC0 a . . . ax

C
n for s(a) = C, and xC = xCn a . . . ax

C
0 for

s(a) = B.
Considering a rewriting system R compatible with some Kachinuki ordering �s, at

first glance it might be tempting to assume that derivations modulo R are isomorphic to
derivations modulo RC = {`C → rC | ` → r ∈ R}. Since R ⊆ �s holds if, and only
if, RC ⊆ �C, upper bound results for �C would then imply upper bound results for �s.
However, the crucial observation is that

x→R y does not imply xC →RC yC.

I Example 3. For R = {ab → ba} over alphabet {a, b, c}, precedence a � b � c, status
function s with s(a) = C, s(b) = B and arbitrary n 6= 0, we have RC = R and

cnab→R cnba, but (cnab)C = cnab 6→RC bcna = (cnba)C.

This shows that in general rewriting modulo some finite system R translates into rewriting
on straightened strings modulo some infinite system (or rule scheme) with unbounded size of
right-hand sides of rules. For infinite rewriting systems compatible with the standard Kachi-
nuki ordering, however, the derivational complexity is not necessarily primitive recursively
bounded, as the following example shows.

I Example 4. The infinite string rewriting system A = {ab→ bba} ∪ {biaab→ abia | i ≥ 0}
is compatible with �C for a � b, but dcA is not primitive recursively bounded [5]. (In fact,
A is a string version of the term rewriting system from [5], slightly simplified.) Note that A
has infinitely many right-hand sides, although →A is finitely branching.
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3 A worst case derivation strategy

For the rest of the exposition let Σ = {a0, . . . , an}, and consider the total precedence
an � · · · � a0. First, we give a characterization of Kachinuki orderings on strings of bounded
size in terms of rewriting relations.

I Definition 5. Let P0 = {ai → ε | 0 ≤ i ≤ n} and, for k > 0,

Pk = {a0 → ε, ai+1 → ak
i , ai+1a0 → ak−1

i ai+1 | 0 ≤ i < n}.

Note that Pk is terminating because of Pk ⊆ �C. Further, ai →+
Pk
ε, thus ai+1 →+

Pk
ai

for k > 0. Since x →+
Pk

ε for x ∈ Σ∗, normal forms modulo Pk are unique, thus Pk is
confluent. For other characterizations of path orderings (on general terms) by rewriting
systems see [6, 2, 1]; in contrast to Pk, these systems are non-terminating, however.

I Lemma 6. For x, y ∈ Σ∗ and k ≥ 0, if x �C y and |y| ≤ k, then x→+
Pk
y.

Proof. By induction on x along �C. J

I Corollary 7. For a rewriting system R compatible with the standard Kachinuki ordering
where {|r| | `→ r ∈ R} is finite, dcR is primitive recursively bounded.

Proof. Sketch (a special case of [4]): For max{|r| | ` → r ∈ R} = k, define a strictly
monotone interpretation for Pk as follows. Inductively define functions āi on the natural
numbers by ā0(m) = m + 1, āi+1(0) = āk

i (m) + 1, and āi+1(m + 1) = āk−1
i (āi+1(m)) + 1.

Then dcR(m) ≤ dhPk
(am

n ) ≤ ām
n (0). J

Next, we determine a worst case rewriting strategy for Pk in the sense that it induces
maximal derivation lengths. The cases k ≤ 1 are uninteresting as all derivations have the
same length and the derivational complexity of Pk is linear, therefore we assume k > 1 from
now on.

I Definition 8. Let ⇁k on Σ∗ be defined as the following relation, where u ∈ Σ∗, v ∈ {a0}∗,
0 ≤ i < n, m ≥ 0:

am+1
0 ⇁k a

m
0 ,

uai+1 ⇁k ua
k
i ,

uai+1a0v ⇁k ua
k−1
i ai+1v.

Observe that ⇁k ⊆ →Pk
, that ε is the only normal form modulo ⇁k, and that ⇁k is

deterministic in the sense that every string except ε has exactly one successor modulo ⇁k.
Further note that ⇁k does not correspond to an innermost (i. e., rightmost) derivation
strategy for Pk. The following commutation property is needed later.

I Lemma 9. For x, y1, y2 ∈ Σ∗, if y1 ←Pk
x ⇁k y2, then y1 ⇁k ◦ ←Pk

y2 or y1 ←∗Pk
y2.

Proof. We proceed by case analysis, using the notations from Definition 8. Recall that
we assume k > 1. Case 1: x = am+1

0 , thus y1 = y2 = am
0 . Case 2: x = uai+1, thus

y2 = uak
i . Then either y1 = y2, or y1 = u′ai+1 for u →Pk

u′. In the latter case the
underlying redexes to not overlap, thus y1 ⇁k u′ak

i ←Pk
y2. Case 3: x = uai+1a0v,

thus y2 = uak−1
i ai+1v. If y1 = y2 we are done. If y1 = u′ai+1a0v for u →Pk

u′, then
y1 ⇁k u′ak−1

i ai+1v ←Pk
y2. Similarly, if y1 = uai+1a0v

′ for v →Pk
v′, then v′ ∈ {a0}∗

and y1 ⇁k ua
k−1
i ai+1v

′ ←Pk
y2. If y1 = uai+1v using rule a0 → ε, then y2 →∗Pk

y1 since
ak−1

i →∗Pk
ε. Eventually, if y1 = uak

i v using rule ai+1 → ak
i , then y2 →∗Pk

y1 since, for k > 1,
ak−1

i ai+1 →Pk
ak−1

i ak
i = ak

i a
k−1
i →∗Pk

ak
i ai →∗Pk

ak
i a0. J
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4 On the derivational complexity of Kachinuki orderings

I Lemma 10. Let → and ⇁ be binary relations on the same set such that Nf(⇁) ⊆ Nf(→)
and ← ◦⇁ ⊆ (⇁ ◦ ←+) ∪ ←∗. Then for every reduction sequence modulo → there is a
reduction sequence modulo ⇁ of the same length and starting from the same element.

Proof. First we show←n◦⇁ ⊆⇁=◦←≥n−1 for n > 0 by induction on n: We have←1◦⇁ ⊆
(⇁◦←+)∪←∗ ⊆⇁= ◦←≥0 and, using the induction hypothesis,←n+1 ◦⇁ =←n ◦←◦⇁ ⊆
←n◦((⇁◦←+)∪←∗) = (←n◦⇁◦←+)∪(←n◦←∗) ⊆ (⇁=◦←≥n−1◦←+)∪←≥n = ⇁=◦←≥n.

Now for n ≥ 0, if x →n y, then there is some element y′ such that x ⇁n y′. Again,
this is shown by induction on n. The case n = 0 being trivial, assume x → ◦ →n y. By
Nf(⇁) ⊆ Nf(→) we obtain x ⇁ z for some z, and from y ←n+1 x ⇁ z we get y ⇁= ◦ ←≥n z

by the first claim. By induction hypothesis, z ⇁≥n z′ for some z′, so x ⇁ z ⇁n y′ ⇁∗ z′ for
some y′, concluding the proof. J

Combining these two lemmas, we arrive at the announced worst case property of the
derivation strategy ⇁k.

I Corollary 11. If R is a rewriting system compatible with �C and max{|r| | `→ r ∈ R} = k,
then dh⇁k

(x) = dhPk
(x) ≥ dhR(x).

This result can now be generalized to arbitrary Kachinuki orderings, as follows.

I Theorem 12. If R is a rewriting system compatible with �s for status function s and
max{|r| | `→ r ∈ R} = k, then dc⇁k

(m) ≥ dcR(m).

Proof. Sketch: Analogously to Pk and⇁k, define a rewriting system Ps,k and a corresponding
worst case strategy ⇁s,k. Let L = {x ∈ Σ∗ | ∃m ≥ 0 : am

n ⇁s,k x}. We then show that
x ⇁s,k y is equivalent to xC ⇁k y

C for x, y ∈ L, and conclude by dc⇁k
(m) = dh⇁k

(am
n ) =

dh⇁s,k
(am

n ) = dhPs,k
(am

n ) ≥ dcR(m). J

I Corollary 13. Finite rewriting systems that are compatible with a Kachinuki ordering have
primitive recursively bounded derivational complexity.

Acknowledgments: Thanks to Johannes Waldmann for posing the question addressed here.
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Abstract
We describe a method for proving termination of massively parallel GPU kernels. An implement-
ation in KITTeL is able to show termination of 94% of the 598 kernels in our benchmark suite.

1 Introduction

Graphics processing units (GPUs) are highly parallel shared-memory processors that can
accelerate compute intensive applications. To leverage the power of a GPU, a programmer
identifies a part of an application that exhibits parallelism; this part can then be extracted
into computational kernel and offloaded to a GPU.

Kernel programming languages such as CUDA [14] and OpenCL [11] are data-parallel
languages that use barriers for synchronisation. Roughly, when a thread reaches a barrier, it
waits until all other threads have also reached a barrier. Once a barrier has been reached
by every thread, execution stalls until all outstanding writes to shared memory have been
committed. Committing all writes ensures that any write to shared memory that occurs
before a barrier is visible to any thread after the barrier; this enables threads to communicate.

As GPUs are separate devices to which kernels are offloaded, it is generally difficult to
perform live debugging. Hence, different means are needed to identify bugs. In previous
work [3, 6], we have looked at uncovering data races. Here we consider termination.

Unlike CPU applications, which may be reactive, GPU kernels are required to terminate:
any data computed by a kernel is inaccessible from the CPU as long as the kernel has
not terminated. Besides this practical consideration, termination is also important from a
theoretical perspective: the data race detection method described in [3], which underpins
our data race detection tool GPUVerify, is only sound for terminating kernels.

We describe and evaluate a method for proving termination of kernels. Termination
analysis is complicated by concurrency, but there is no need to reason about recursive calls
or dynamically changing data structures since recursion and dynamic memory allocation are
not generally supported by kernel programming languages.

The contributions of this paper are two-fold:
1. We leverage termination analysis for sequential programs to obtain an analysis technique

for GPU kernels; the technique abstracts from all threads except an arbitrary one.
2. We adapt an existing termination analysis tool—KITTeL [8, 9]—and show that it can be

successfully applied to a large set of real-world kernels.

2 Reduction to Sequential Termination Analysis

We present the kernel programming language from [5], which has the following grammar:
expr e ::= c | v | A[e] | e1 op e2
stmt s ::= v := e | A[e1] := e2 | if (e) {ss1} else {ss2} | while (e) {ss} | barrier
stmts ss ::= ε | s; ss

Here, c and v represent constants and thread-private variables; A and op represent shared
arrays and arbitrary binary operators. As explained in the introduction, the barrier statement

∗ This work was supported by the EU FP7 STREP project CARP (project number 287767).

50



2 Automatic Termination Analysis for GPU Kernels

JeKσv
σA

(σv, σA,while (e) {ss}; ss′)
→s (σv, σA, ss · while (e) {ss}; ss′)

(Loop-T)
¬JeKσv

σA

(σv, σA,while (e) {ss}; ss′)
→s (σv, σA, ss

′)

(Loop-F)

(a) The thread-level rules (operating over thread states (σv, ss) and shared memory σA)

K(t) = (σv, ss) (σv, σA, ss)→s (σ′
v, σ

′
A, ss

′) K′ = K[t 7→ (σ′
v, ss

′)]
(σA,K)→k (σ′

A,K
′)

(Step)

(
∀t : ∃σv :

∨ (∃ss :K(t) = (σv,barrier; ss)∧K′(t) = (σv, ss))
(K(t) = (σv, ε) ∧K′(t) = (σv, ε))

)

∃t, σv, ss : K(t) = (σv, barrier; ss)
(σA,K)→k (σA,K

′)
(Barrier)

(b) The Kernel-level rules (operating over kernel states (σA,K))

Figure 1 Operational semantics of our kernel programming language

allows for synchronisation between threads; ε represents the empty sequence of statements.
A kernel program P is a sequence of statements ss; all threads execute the same sequence ss.
For technical reasons we assume that an expression e has at most one sub-expression of the
form A[e′], so that evaluating an expression involves reading at most once from the shared
state; a kernel can be trivially preprocessed to satisfy this restriction.

A thread state is a pair (σv, ss), where σv represents the private memory of a thread—
mapping private variables to values—and where ss is the sequence of the statements the
thread needs to execute. A kernel state is a pair (σA,K), where σA represents the shared
memory of the kernel—mapping shared arrays to sequences of values—and where K is a
map from a finite set of thread identifiers t to thread states. The initial kernel state of a
kernel program P is any state such that the second component of each K(t) is P .

Figure 1 gives the operational semantics of the language. For brevity, we omit the rules
for the assignments and if-statement, which are straightforward, and refer the reader to [5].
The rules for the while-statement evaluate the guard e under σv and σA, denoted JeKσv

σA ,
and proceed accordingly. As can be seen from rule Step, the language has an interleaving
semantics. Rule Barrier is used for synchronisation between threads: no thread can proceed
beyond a barrier unless all threads have either reached a barrier or have terminated. The
rule requires that at least one thread is actually at a barrier; this ensures that the rule no
longer fires once all threads have terminated (i.e., once all have reached a state (σv, ε)).

We next reduce the termination problem for kernel programs to a sequential termination
problem. The reduction makes termination analysis for kernel programs thread-modular by
checking termination of a single, arbitrary thread under an environmental abstraction that
over-approximates the effects of the other threads.

To obtain the abstraction, existentially quantify the premise of each thread-level rule over
all array stores σA and replace rule Barrier by the thread-level rule (σv, σA,barrier; ss)→
(σv, σA, ss). Denote by →s,? the over-approximating thread-level reduction relation such
obtained. The relation ensures that the contents of σA is irrelevant and that a thread no
longer has to wait for any other thread once it reaches a barrier. We have the following.

I Theorem 2.1. Let P be a kernel program. If for each σv and σA it holds that all reductions
(σv, σA, P )→s,? · · · →s,? · · · are finite, then P terminates under the semantics of Figure 1.

Proof. Suppose the contrary, then there exists an infinite reduction ρ of P . As the number
of threads is finite, there is a thread t that is selected an infinite number of times by rule
Step. We construct an infinite reduction for t under →s,?: (i) for each application of Step
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selecting t apply the over-approximating version of the thread-level rule employed and (ii)
for each application of rule Barrier employ the over-approximating barrier rule. The over-
approximating rules fire, as (i) the existential quantification over all array stores σA ensures
that e can be evaluated precisely as in ρ and as (ii) the thread-level barrier rule essentially
skips a barrier. Hence, we have an infinite reduction for t under →s,?, contradiction. J

A theorem related to the one above underpins the soundness of GPUVerify, where
shared state abstraction allows race-freedom to be verified by considering just two arbitrary
threads [3]. Observe that the theorem only modifies the operational semantics; kernel
programs are left unchanged. Furthermore, the reverse of the theorem does not hold:
termination might depend on shared memory sub-expressions evaluating to specific values.

3 Experimental Evaluation

To evaluate the effectiveness of Theorem 2.1, we adapted the KITTeL termination analysis
tool [8, 9] and applied it to a suite of 598 kernels, 381 of which have loops. To demonstrate
that our approach works out-of-the-box, we included the loop-free kernels in our evaluation.
The kernels have on average 86 lines of code and originate from nine sources:

AMD Accelerated Parallel Processing SDK v2.6 [1] (78 kernels, 54 of which have loops).
NVIDIA GPU Computing SDK v5.0 [13] (183 kernels, 109 of which have loops); we also
include 8 kernels from v2.0 of the SDK, 7 of which have loops.
C++ AMP Sample Projects [12] (20 kernels, 16 of which have loops)
The gpgpu-sim benchmarks [2] (33 kernels, 24 of which have loops)
The Parboil benchmarks v2.5 [16] (25 kernels, 19 of which have loops)
The Rodinia benchmark suite v2.4 [4] (36 kernels, 24 of which have loops)
The SHOC benchmark suite [7] (87 kernels, 53 of which have loops)
The PolyBench/GPU benchmark suite [10] (64 kernels, 49 of which have loops)
Rightware Basemark CL v1.1 [15] (64 kernels, 26 of which have loops)

Each suite is publicly available except for Basemark CL which was provided to us under
an academic license. The collection covers all the publicly available GPU benchmark suites
we are aware of. The kernel counts above do not include 5 kernels that we manually removed
because they use CUDA surfaces or thread fences [14], which we currently do not support.

KITTeL The KITTeL termination analysis tool [8, 9] consists of a front-end, llvm2KITTeL,
which takes llvm bitcode1 and translates this into an integer-based rewrite system. The
back-end automatically tries to prove termination of the generated rewrite system.

We adapted llvm2KITTeL to handle kernels (compiled to bitcode by Clang2); we did not
make any changes to the termination analysis back-end. As llvm2KITTeL models only a
single thread and already abstracts from most memory operations (yielding nondeterministic
values for loads from memory), the changes we needed to make were minimal. To summarise:
(i) we ensured that llvm2KITTeL abstracts loads even in cases where it usually does not
(e.g., when a pointer points to a unique global variable representing a single integer), (ii) we
disabled the hoisting of loop-invariant loads from loops (due to concurrency the loaded value
might differ between loop iterations), and (iii) we made llvm2KITTeL aware of the fact that

1 http://llvm.org/
2 http://clang.llvm.org/
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4 Automatic Termination Analysis for GPU Kernels

the number of threads executing a kernel is constant for the duration of an execution (the
number of threads is often referred to in loop guards; hence, awareness that this number is
constant—or at least bounded—is often critical for showing termination).

Loop Invariants Currently, KITTeL does not infer loop invariants that may be needed for
proving termination. We provided these invariants by hand and proved them correct with
GPUVerify prior to running our experiments. In principle we could extend GPUVerify’s in-
variant inference engine [3] to generate the needed invariants; this would require infrastructure
to feed the generated invariants into KITTeL.

We required loop invariants stating: (i) the loop counter must be positive (31 kernels),
(ii) the step value for the loop counter is positive (18 kernels), (iii) the loop counter is always
smaller than or equal to a value which is subtracted from it in the loop guard (2 kernels).

Experimental Setup All experiments were conducted on a Mid 2009 MacBook Pro with a
2.53GHz Intel Core 2 Duo and 4GB RAM running OS X 10.9.2 and Clang/llvm 3.4. The
reported times are averages over three runs and include the time needed to compile a kernel
into bitcode. The timeout used was 10 minutes. We adapted llvm2KITTeL as described
above and always invoked the tool with its -increase-strength option—turning left and
right shifts into multiplications and divisions, respectively. The latter facilitates termination
analysis of kernels where the loop counter is being shifted. The SMT solver used with KITTeL
was Z3 v4.3.1. Both llvm2KITTeL and KITTeL were downloaded on 21-04-2014.3

Results Unsurprisingly, KITTeL managed to prove termination of all 217 loop-free kernels.
On average termination of these kernels was shown in 0.63s and the maximum time required
was 6.15s. Six of the kernels needed over 1s; this was either due to a long compilation time
or the kernel consisting of a large number of subroutines.

Of the 381 kernels with loops, 346 could be shown terminating. On average termination was
shown in 7.23s and the maximum time needed was 254.17s (see also Figure 2). Of the 35 kernels
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Figure 2 Cumulative histogram showing
the time taken to prove termination of the
kernels with loops

for which termination could not be shown, 31
reached the timeout of 10 minutes. In 4 cases
KITTeL indicated that the constructed rewrite
system was nonterminating (this does not imply
that the original kernels are nonterminating, as
the constructed rewrite system in general over-
approximates the behaviour of a thread).

We manually inspected the 35 kernels to see
why termination could not be shown. All 4 cases
where KITTeL indicated nontermination would re-
quire reasoning over floating point numbers. In 4
other cases built-in atomic increment operations
would need to be modelled as returning mono-
tonically increasing values—instead of arbitrary
ones, as is currently the case. In 19 cases termination would require reasoning about shared
memory and, hence, the over-approximation from Theorem 2.1 is too coarse.

The above leaves 8 kernels, all of which timed out. Of these, 2 could be shown terminating
using a very coarse over-approximation of division—yielding unconstrained nondeterministic

3 https://github.com/s-falke/{llvm2kittel,kittel-koat}
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values. One kernel could be shown terminating with llvm2KITTeL’s –only-loop-conditions
option, which abstracts all basic blocks except those from which loops can be exited.

In the case of 2 kernels the function bodies were very large which resulted in a timeout
in llvm2KITTeL (these were the only timeouts in llvm2KITTeL). In the 3 remaining cases a
timeout occurred in KITTeL, although the generated rewrite system was terminating.

4 Conclusion

We have described an approach for proving termination of massively parallel GPU kernels
by reducing the termination problem for these kernels to a sequential termination problem.
With the help of an adapted version of KITTeL the reduction allowed us to prove termination
of 94% of the kernels in our benchmark set and of 91% of the kernels with loops.

As part of future work we would like to automatically infer loop invariants that are
required for proving termination. Moreover, we would like to investigate whether performance
can be improved by outlining—as opposed to inlining—loops into separate procedures.

Acknowledgements The authors wish to thank Adam Betts, Nathan Chong and Stephan
Falke for feedback on the paper. The authors also wish to thank Stephan Falke for making
KITTeL’s source code publicly available and for answering questions regarding the tool.
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Abstract
We present a new kind of nontermination argument for linear lasso programs, called geometric
nontermination argument. A geometric nontermination argument is a finite representation of
an infinite execution of the form (~x+

∑t
i=0 λ

i~y)t≥0. The existence of this nontermination argu-
ment can be stated as a set of nonlinear algebraic constraints. We show that every linear loop
program that has a bounded infinite execution also has a geometric nontermination argument.
Furthermore, we discuss nonterminating programs that do not have a geometric nontermination
argument.

1998 ACM Subject Classification D.2.4 Software/Program Verification

Keywords and phrases Nontermination analysis, Infinite execution, Constraint-based synthesis,
Linear lasso program

1 Introduction

The problem of automatically proving termination of programs has been extensively stud-
ied. For restricted classes of programs there are methods proving termination [1, 7] and
hence nontermination follows from the absence of a termination proof. For broader classes
of programs no complete method for proving termination is known or termination is unde-
cidable. Methods that address these broader classes of programs only check the existence
of a certain kind of termination argument, e.g. a specific kind of ranking function. The
existence of this termination argument proves termination, however the absence of such a
termination argument does not imply nontermination and hence these termination analyses
cannot be used to prove nontermination.

Analyses for nontermination proceed in a similar manner. They do not check the exis-
tence of a general nontermination proof, instead they check for the existence of a certain
kind of nontermination argument, e.g. a recurrence set [3, 5] or an underapproximation of
the program that does not terminate for any input [2].

In this paper we present a new kind of nontermination argument for linear lasso pro-
grams, called geometric nontermination argument. A geometric nontermination argument
is a finite representation of an infinite execution that can be denoted as a geometric series.
The existence of a geometric nontermination argument can be encoded by a set of nonlinear
constraints. Over the reals these constraints are decidable. The advantage of our nontermi-
nation arguments lies in their simplicity. In contrast to recurrence sets [3, 5], the constraints
that state the existence of our geometric nontermination arguments do not contain quanti-
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2 Geometric Series as Nontermination Arguments for Linear Lasso Programs

fier alternation and contain only a small number of nonlinear terms. Unlike [2] we do not
need a safety checker to compute nontermination arguments.

2 Preliminaries

We consider the following class of programs whose states are real-valued vectors.

IDefinition 1 (Linear lasso program). A (conjunctive) linear lasso program P = (STEM, LOOP)
consists of two binary relations STEM and LOOP, that are each defined by a formula whose
free variables are ~x and ~x′ and that have the form A

(
~x
~x′
)
≤ ~b for some matrix A ∈ Rn×m

and some vector ~b ∈ Rm. We call a linear lasso program linear loop program if the formula
that defines the relation STEM is equivalent to true.

I Definition 2 (Infinite execution). An infinite sequence of states (~xt)t≥0 is an infinite execu-
tion of the linear lasso program P = (STEM, LOOP) iff (~x0, ~x1) ∈ STEM and (~xt, ~xt+1) ∈ LOOP

for all t ≥ 1.

3 Geometric Nontermination Arguments

I Definition 3. Let P = (STEM, LOOP) be a linear lasso program such that LOOP is defined
by the formula A

(
~x
~x′
)
≤ ~b. The tuple N = (~x0, ~x1, ~y, λ) is called a geometric nontermination

argument for P iff the following properties hold.

(domain) ~x0, ~x1, ~y ∈ Rn, λ ∈ R and λ > 0.
(init) (~x0, ~x1) ∈ STEM

(point) A
(

~x1
~x1+~y

)
≤ ~b

(ray) A
(
~y
λ~y

)
≤ ~0

The constraints (init), (point), and (ray) given in Definition 3 are (quantifier free) nonlinear
algebraic constraints, the existence of a solution is decidable [6], and hence the existence
of a geometric nontermination argument is decidable. We can check the existence of a
geometric nontermination argument by passing the constraints of Definition 3 to an SMT
solver for nonlinear real arithmetic [4]. If a satisfying assignment is found, this constitutes
a nontermination proof in form of an infinite execution according to the following theorem.

I Theorem 4 (Soundness). If the conjunctive linear lasso program P = (STEM, LOOP) has
a geometric nontermination argument N = (~x0, ~x1, ~y, λ) then P has the following infinite
execution.

~x0, ~x1, ~x1 + ~y, ~x1 + (1 + λ)~y, ~x1 + (1 + λ+ λ2)~y, . . .

Proof. Define ~z0 := ~x0 and ~zt := ~x1 +
∑t
i=0 λ

i~y. Then (~zt)t≥0 is an infinite execution of P :
by (init), (~z0, ~z1) = (~x0, ~x1) ∈ STEM and

A
(

~zt

~zt+1

)
= A

(
~x1+
∑t

i=0
λi~y

~x1+
∑t+1

i=0
λi~y

)
= A

(
~x1
~x1+~y

)
+

t∑

i=0
λiA

(
~y
λ~y

)
≤ ~b+

t∑

i=0
λi~0 = ~b,

by (point) and (ray). J

I Example 5. Consider the linear loop program P = (true, LOOP) depicted as pseudocode
on the left and whose relation LOOP(a, b, a′, b′) is defined by the formula depicted on the
right.
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while (a ≥ 7):
a := b;
b := a + 1;



−1 0 0 0
0 −1 1 0
0 1 −1 0
−1 0 0 1
1 0 0 −1



(
a
b
a′

b′

)
≤




7
0
0
1
1




Note that in this example, the relation LOOP is defined by an affine-linear transformation
and a guard a ≥ 7. In general, linear lasso programs are defined with linear constraints,
which also allow nondeterministic updates of variables.

For x0 = ( 7
8 ), x1 = ( 7

8 ), y = ( 1
1 ) and λ = 1, the tuple N = (x0, x1, y, λ) is a geometric

nontermination argument and the following sequence of states is an infinite execution of P .

( 7
8 ) , ( 7

8 ) , ( 8
9 ) , ( 9

10 ) , ( 10
11 ) , . . .

We are able to decide the existence of a geometric nontermination argument, however
we are not able to decide the existence of an infinite execution because there are programs
that have an infinite execution but no geometric nontermination argument as the following
example illustrates.

I Example 6. The following linear lasso program has an infinite execution, e.g.
(

2t

3t

)
t≥0

,
but it does not have a geometric nontermination argument.

while (a ≥ 1 ∧ b ≥ 1):
a := 2 · a;
b := 3 · b;

4 Bounded Infinite Executions

In this section we show that we can always prove nontermination of linear loop programs if
there is a bounded infinite execution.

Let | · | : Rn → R denote some norm. We call an infinite execution (~xt)t≥0 bounded iff
there is a real number d ∈ R such that for each state its norm in bounded by d, i.e. |~xt| ≤ d
for all t.

I Lemma 7 (Fixed Point). Let P = (true, LOOP) be a linear loop program. The loop P

has a bounded infinite execution if and only if there is a fixed point ~x∗ ∈ Rn such that
(~x∗, ~x∗) ∈ LOOP.

Proof. If there is a fixed point ~x∗, then the loop has the infinite bounded execution ~x∗, ~x∗, . . ..
Conversely, let (~xt)t≥0 be an infinite bounded execution. Boundedness implies that there is
an d ∈ R such that |~xt| ≤ d for all t. Consider the sequence ~zk := 1

k

∑k
t=1 ~xt.

|~zk − ~zk+1| =
∣∣∣∣∣
1
k

k∑

t=1
~xt −

1
k + 1

k+1∑

t=1
~xt

∣∣∣∣∣ = 1
k(k + 1)

∣∣∣∣∣(k + 1)
k∑

t=1
~xt − k

k+1∑

t=1
~xt

∣∣∣∣∣

= 1
k(k + 1)

∣∣∣∣∣
k∑

t=1
~xt − k~xk+1

∣∣∣∣∣ ≤
1

k(k + 1)

(
k∑

t=1
|~xt|+ k|~xk+1|

)

≤ 1
k(k + 1)(k · d+ k · d) = 2d

k + 1 −→ 0 as k →∞.

Hence the sequence (~zk)k≥1 is a Cauchy sequence and thus converges to some ~z∗ ∈ Rn. We
will show that ~z∗ is the desired fixed point.
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For all t, the polyhedron Q := {
(
~x
~x′
)
| A

(
~x
~x′
)
≤ b} contains

(
~xt

~xt+1

)
and is convex.

Therefore for all k ≥ 1,
1
k

k∑

t=1

(
~xt

~xt+1

)
∈ Q.

Together with
(

~zk
k+1

k ~zk+1

)
= 1
k

(
~0
~x1

)
+ 1
k

k∑

t=1

(
~xt

~xt+1

)

we infer ((
~zk

k+1
k ~zk+1

)
− 1
k

(
~0
~x1

))
∈ Q,

and since Q is closed we have

(
~z∗
~z∗
)

= lim
k→∞

((
~zk

k+1
k ~zk+1

)
− 1
k

(
~0
~x1

))
∈ Q. J

Because fixed points give rise to trivial geometric nontermination arguments, we can
derive a criterion for the existence of geometric nontermination arguments from Lemma 7.

I Corollary 8. If the linear loop program P = (true, LOOP) has a bounded infinite execution,
then it has a geometric nontermination argument.

Proof. By Lemma 7 there is a fixed point ~x∗ such that (~x∗, ~x∗) ∈ LOOP. We choose ~x1 = ~x∗,
~y = ~0, and λ = 1, which satisfies (point) and (ray) and thus is a geometric nontermination
argument for P . J

I Example 9. Note that according to our definition of a linear lasso program, the relation
LOOP is a topologically closed set. If we allowed the formula defining LOOP to also contain
strict equalities, Lemma 7 no longer holds: the following program is nonterminating and has
a bounded infinite execution, but it does not have a fixed point. However, the topological
closure of the relation LOOP contains the fixed point x∗ = 0.

while (x > 0):
x := 1

2 · x;

5 Discussion

5.1 Recurrence Sets
Nontermination arguments related to ours are recurrence sets [3, 5]. A recurrence set S is a
set of states such that

at least one state of S is in the range of STEM, i.e.

∃~x, ~x′.(~x, ~x′) ∈ LOOP ∧ ~x′ ∈ S, and

for each state in S there is at least one LOOP-successor that is in S, i.e.,

∀~x.~x ∈ S → ∃~x′(~x, ~x′) ∈ LOOP.

If we restrict the form of S to a convex polyhedron, we can encode its existence using alge-
braic constraints [3, 5] and hence decide the existence of such a recurrence set. However these
algebraic constraints are not easy to solve; they contain nonlinear arithmetic and quantifier
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alternation that cannot be eliminated with Farkas lemma if the program is nondeterministic.
In contrast to these constraints, our constraints (init), (point), and (ray) contain at most
one nonlinear term for each dimension of the state space.

However, recurrence sets are more general nontermination arguments than geometric
nontermination arguments as shown by the following lemma.

I Lemma 10. Let P = (STEM, LOOP) be a linear lasso program and N = (~x0, ~x1, ~y, λ) be a
geometric nontermination argument for P . The following set S is a recurrence set for P .

S =
{
~x1 +

t∑

i=0
λi~y | t ∈ N

}

Proof. The state ~x1 is in the range of STEM by (init). Furthermore, for ~x1 +
∑t
i=0 λ

i~y ∈ S,
~x1 +

∑t+1
i=0 λ

i~y ∈ S and (~x1 +
∑t
i=0 λ

i~y, ~x1 +
∑t+1
i=0 λ

i~y) ∈ LOOP according to the proof of
Theorem 4. J

Furthermore, for every geometric nontermination argumentN = (~x0, ~x1, ~y, λ) there exists
a recurrence set S that is a polyhedron.

S = {~x ∈ Rn | ~yT (~x− ~x1) ≥ 0 ∧
∧

i∈I
~zTi (~x− ~x1) = 0},

where (~zi)i∈I is a span of the vector space orthogonal to ~y. (For λ < 1 we need to add the
additional constraint ~yT (~x− ~x1) ≤ ~yT (~x1 + 1

1−λ~y).)

5.2 Integers vs. Reals
A nonterminating program over the reals may terminate over the integers. If we restrict the
states of the linear lasso program to integer-valued vectors,then Theorem 4 only holds if we
restrict the values for the variables ~x0, ~x1, ~y, and λ in the constraints (init), (point), and
(ray) to integers. Satisfiability of nonlinear arithmetic over the integers is undecidable and
we do not know if our constraints fall into a decidable subclass of this problem. However,
we may fix the value of λ in advance to a finite set of values. If we do so, we do not have
completeness (we may not find every geometric nontermination argument) but we obtain
linear arithmetic constraints, which can be solved efficiently.
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Abstract
Recently, to analyze procedural programs by using techniques in the field of term rewriting,
several transformations of a program into a rewrite system have been developed. Such trans-
formations are basically complete in the sense of computation, and e.g., termination of the rewrite
system ensures termination of the program. However, in general, termination of the program is
not preserved by the transformations and, thus, the preservation of termination is a common in-
teresting problem. In this paper, we discuss the improvement of a transformation from a simple
procedural program over integers into a constrained term rewriting system by appending loop
invariants to loop conditions of “while” statements so as to preserve termination as much as
possible.

1 Introduction

Recently, program verification methods for procedural programs using term rewriting tech-
niques have been developed e.g., [8, 12, 16, 5]. In these methods, to verify a property (e.g.,
termination), a program is transformed into a rewrite system, and then the rewrite system
is verified instead of the program. A common problem in these methods is that in general
they do not preserve termination of the program when transforming it into a rewrite system.
The transformed rewrite system covers all computations of the program, but can reduce a
term which does not correspond to any intermediate state for computation of the program.

This problem is crucial in verifying the equivalence of functions by using inductive the-
orem proving methods [15, 6], which are based on rewriting induction [13]. Rewriting in-
duction requires a rewrite system to be terminating. For this reason, when termination
of a program is not preserved in transforming it, we cannot apply the methods based on
rewriting induction to the verification of the transformed rewrite system.

In this paper, we aim at improving transformations of simple procedural programs over
integers, which are based on “while” programs, into rewrite systems so as to preserve ter-
mination as much as possible. To this end, We first introduce the transformation in [8] by
using an example, for which the transformation does not preserve termination. Then, we
show that appending a loop invariant to the loop condition of a “while” statement in the
program makes the transformation preserve termination of the program. Finally, we briefly
introduce how to automatically obtain the loop invariant by using an existing technique.
Note that a preliminary version of this work is [10].

We deal with constrained term rewriting systems [8, 2, 14], but the idea in this paper is
applicable to other frameworks (transformations and their resulting rewrite systems), e.g.,
integer rewriting systems [7, 16] and logically constrained term rewriting systems [11]. The
improvement is useful to prove termination of a procedural program.
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2 On Improving Termination Preservability of Transformations

One may think that we can prove correctness of programs if we find loop invariants which
are useful to preserve termination in applying the transformation. However, this would not
be sufficient for the purpose of proving equivalence of two functions defined by programs.

This paper is organized as follows. Section 2 briefly introduces constrained TRSs. Sec-
tion 3 introduces the transformation in [8] by an example. Section 4 shows an idea for
improving the transformation by using loop invariants. Section 5 concludes this paper.

2 Preliminaries

In this section, we briefly recall some basic notions and notations of constrained TRSs [8,
2, 14]. We assume familiarity of readers with the basic notions and notations of term
rewriting (see [1]). Throughout this paper, we use V as a countably infinite set of variables.

We restrict constrained TRSs to be over a fixed interpretable signature for integers.
We use function symbols 0 (a constant), s (unary), p (unary), and plus (binary), which
are interpreted to in the usual way: 0 means 0, s(x) means x + 1, p(x) means x − 1, and
plus(x, y) means x+y. In the following, we write t1 + t2 instead of plus(t1, t2). Moreover, we
use the usual comparison operators (e.g., =, ≤, <) as predicates with the usual semantics,
and use quantifier-free formulas over the interpreted symbols, the predicates, and variables,
as constraints.

Let F be a signature which is basically specified by users. A constrained rewrite rule is a
triple (l, r, φ), written as l → r [[φ]], such that l and r are terms over F and the interpreted
symbols, l is not a variable, φ is a satisfiable constraint, and Var(l) ⊇ Var(r) ∪ Var(φ). A
constrained term rewriting system (constrained TRS) is a finite set R of constrained rewrite
rules. We omit the following rules for interpreted symbols from constrained TRSs shown in
this paper:

{ s(p(x))→ x, p(s(x))→ x, 0+y → y, s(x)+y → s(x+y), p(x)+y → p(x+y) }

The rewrite relation →R of R is defined as follows: →R = {(C[lσ], C[rσ]) | l → r [[φ]] ∈
R, φσ has no symbol in F , φσ is valid}. A term t is called terminating if there is no infinite
rewrite sequence of →R which is starting from t. R is called terminating if every term is
terminating.

3 Transforming C Programs over Integers into Constrained TRSs

In this section, we briefly introduce a transformation of simple procedural programs over
integers into constrained TRSs [8].

We deal with programs of the following form:

int f(int x1, . . ., int xn){ D; S; return e; }

where D is a sequence of declarations for local variables with initialization, S is a so-called
“while” program (having assignments, “while”, and “if” statements), e is an expression, and
the code is compiled successfully as a C program.

I Example 1. The program sum illustrated in Listing 1 is the one we deal with.

The transformation in [8] (cf. [5, 16]) converts programs in a natural way: constrained
rewrite rules are generated so as to represent control flows of programs, and loop or branch
conditions of “while” and “if” statements are added to rewrite rules as constraints. The
transformation preserves termination of a program w.r.t. terms corresponding to calls of
functions defined in the program.
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Listing 1 A program computing the sum from 0 to x

int sum(int x){
int i=0, z=0;
if(x > 0)

while(i != x){
i = i+1;
z = z+i;

}
return z;

}

I Example 2. Consider the program sum in Listing 1 again. This program is transformed
into the following constrained TRS:

Rsum =





sum(x)→ u1(x, 0, 0),
u1(x, i, z)→ u2(x, i, z) [[x > 0]], u2(x, i, z)→ u2(x, s(i), z + s(i)) [[i 6= x]],
u1(x, i, z)→ z [[¬ x > 0]], u2(x, i, z)→ z [[¬ i 6= x]]





The function symbols u1 and u2 represent the “if” and “while” statements in the program
sum. All the terms of the form sum(n) with an interpreted term n are terminating, but Rsum
is not terminating. For example, u2(0, s(0), 0) which is not reachable from any term of the
form sum(n) is not terminating.

4 Improving Preservation of Termination

In this section, we improve termination preservability of the transformation by appending
loop invariants to loop conditions of “while” statements.

Loop invariants are constraints which are satisfied whenever the bodies of “while” state-
ments start to be evaluated. Thanks to this feature of loop invariants, appending a loop
invariant to the corresponding loop condition does not change the computation of programs
at all.

I Example 3. Consider the program sum in Listing 1 again. By using the method in [3]
with the SMT solver Z3 [4], we obtain the constraint “x > i” as a loop invariant of the
“while” statement in the program. Thus, by appending the loop invariant to the loop
condition “i != x” of the “while” statement, we obtain the equivalent program illustrated
in Listing 2. The modified program is transformed into the following constrained TRS:

R′
sum =





sum(x)→ u1(x, 0, 0),
u1(x, i, z)→ u2(x, i, z) [[x > 0]], u2(x, i, z)→ u2(x, s(i), z + s(i)) [[i 6= x ∧ x > i]],
u1(x, i, z)→ z [[¬ x > 0]], u2(x, i, z)→ z [[¬(i 6= x ∧ x > i)]]





In this case, R′
sum is terminating, and thus, termination of the program sum in Listing 2

is preserved by the transformation. Note that the termination was proved by the imple-
mentation of the technique proposed by Sakata et al [14]. Moreover, the termination prover
AProVE 1.2 [9] succeeded in proving termination of the following integer term rewriting
system [7] which corresponds to R′

sum:




sum(x)→ u1(x, 0, 0, x > 0),
u1(x, i, z, true)→ u2(x, i, z, x 6= i ∧ x > i), u1(x, i, z, false)→ z,

u2(x, i, z, true)→ u2(x, i+ 1, z + i+ 1, x 6= i+ 1 ∧ x > i+ 1), u2(x, i, z, false)→ z
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4 On Improving Termination Preservability of Transformations

Listing 2 A variant of the program sum where the loop invariant is introduced
int sum(int x){

int i=0, z=0;
if(x > 0)

while(i != x && x > i){
i = i+1;
z = z+i;

}
return z;

}

We summarize the idea explained above as follows:
1. we generate a loop invariant for each “while” statement in the program;
2. we append the loop invariant to the corresponding loop condition;
3. we apply the transformation to the modified program, getting a constrained TRS.
Note that not for all terminating programs, the transformed rewrite system is terminating.

5 Conclusion

In this paper, by using an example, we showed the idea for improving preservation of ter-
mination in applying transformations from simple procedural programs over integers into
constrained TRSs. However, this idea does not always work as we expected. For example,
true is a trivial loop invariant which does not improve anything. For this reason, the
improvement relies on the power of methods to generate loop invariants.

One may think that we do not have to append a loop invariant to the negation of the
corresponding loop condition, which is coupled with rewrite rules controlling the computa-
tion flow of the “while” statements. For example, for the computation of sum, we do not
need to append x > i to u2(x, i, z) → z [[¬ i 6= x]], i.e., u2(x, i, z) → z [[¬ i 6= x]] is enough.
However, if x > i is not appended to ¬ i 6= x, then the rewrite system is not sufficiently
complete w.r.t. interpretable terms. This can be said of the case that we replace the rule by
u2(x, i, z) → z [[(¬ i 6= x) ∧ x > i]] — since x > i is a loop invariant, the invariant holds
when leaving out of the “while” loop, and thus, to make the reduction more precise, we may
append x > i to ¬ i 6= x. In many methods based on rewriting induction, however, sufficient
completeness of a rewrite system is required, and thus, the transformed rewrite system is
expected to be sufficient complete. For this reason, we do not employ the more strict rule
u2(x, i, z)→ z [[(¬ i 6= x) ∧ x > i]].

As future work, we will make an experiment in order to evaluate how successful the
improvement is, and will further improve the preservation of termination.
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Abstract
We present a set of rules for compiling a Dalvik bytecode program into a logic program with array
constraints. Non-termination of the resulting program entails that of the original one, hence the
techniques we have presented before for proving non-termination of constraint logic programs
can be used for proving non-termination of Dalvik programs.
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1 Introduction

Android is currently the most widespread operating system for mobile devices. Applica-
tions running on this system can be downloaded from anywhere, hence reliability is a major
concern for its users. In this paper, we consider applications that may run into an infinite
loop, which may cause a resource exhaustion, for instance the battery if the loop continu-
ously uses a sensor as the GPS. Android programs are written in Java and compiled to
the Google’s Dalvik Virtual Machine (DVM) bytecode format [3] before installation on a
device. We provide a set of rules for compiling a Dalvik bytecode program into a constraint
logic program [5]. Non-termination of the resulting program entails that of the original one,
hence the technique we have presented before [6] for proving non-termination of constraint
logic programs can be used for proving non-termination of Dalvik programs. We model the
memory and the objects it contains with arrays, so we compile Dalvik programs to logic
programs with array constraints and we consider the theory of arrays presented in [1].

2 The Dalvik Virtual Machine

We briefly describe the operational semantics of the DVM (see [3] for a complete description).
Unlike the JVM which is stack-based, the DVM is register-based. Each method uses its own
array of registers and invoked methods do not affect the registers of invoking methods.
The number of registers used by a method is statically known. At the beginning of an
execution, the N arguments to a method land in its last N registers and the other registers
are initialized to 0. Many Dalvik bytecode instructions are similar, so we concentrate on a
restricted set which exemplifies the operations that the DVM performs.

const d, c Move constant c into register d (i.e., the register at index d in the array of
registers of the method where this instruction occurs).
move d, s Move the content of register s into register d.
add d, s, c Store the sum of the content of register s and constant c into register d.
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2 Non-termination of Dalvik bytecode

if -lt i, j, q If the content of register i is less than the content of register j then jump to
program point q, otherwise execute the immediately following instruction.
goto q Jump to program point q.
invoke S,m where S = s0, s1, . . . , sp is a sequence of register indexes and m is a method.
The content rs0 of register s0, . . . , rsp of register sp are the actual parameters of the
call. Value rs0 is called receiver of the call and must be 0 (the equivalent of null in
Java) or a reference to an object o. In the former case, the computation stops with an
exception. Otherwise, a lookup procedure is started from the class of o upwards along
the superclass chain, looking for a method with the same signature as m. That method
is run from a state where its last registers are bound to rs0 , rs1 , . . . , rsp .
return Return from a void method.
new-instance d, κ Move a reference to a new object of class κ into register d.
iget d, i, f (resp. iput s, i, f) The content ri of register i must be 0 or a reference to an
object o. If ri is 0, the computation stops with an exception. Otherwise, o(f) (the value
of field f of o) is stored into register d (resp. the content of register s is stored into o(f)).

3 Compilation to CLP clauses

We model a memory as a pair (a, i) where a is an array of objects and i is the index into
this array where the next insertion will take place. An object o is an array of terms of the
form [w, f1(v1), . . . , fn(vn)] where w is the name of the class of o, f1, . . . , fn are the names
of the fields defined in this class and v1, . . . , vn are the current values of these fields in o.
So, the first component of a memory is an array of arrays of terms and a memory location is
an index into this array. Memory locations start at 1 and 0 corresponds to the null value.

Our compilation rules are given in Fig. 1–3. We associate a predicate symbol pq to
each program point q of the Dalvik program P under consideration. We generate clauses
with constraints on integer and array terms. Our constraint theory combines the theory
of integers with that of arrays defined in [1]. Our CLP domain of computation D (values
interpreting constraints) is the union of Z with the set Obj of arrays of terms of the form
f(i) where i is an integer and with the set of arrays of elements of Obj. The read a[i] returns
the value stored at position i of the array a and the write a{i ← e} is a modified so that
position i has value e. For multidimensional arrays, we abbreviate a[i] · · · [j] with a[i, . . . , j].

Each rule considers an instruction ins occurring at a program point q. We let Ṽ =
V0, . . . , Vr−1 and Ṽ ′ = V ′0 , . . . , V

′
r−1 be sequences of distinct variables where r is the number

of registers used by the method where ins occurs. For each i ∈ [0, r − 1], variable Vi

(resp. V ′i ) models the content of register i before (resp. after) executing ins. We let M
denote the input memory and M ′ the output memory. So, Ṽ and M (or [A, I]) in the head
of the clauses are input parameters while M ′ is an output parameter. We let id denote
the sequence (V ′0 = V0, . . . , V

′
r−1 = Vr−1) and id−i (where i ∈ [0, r − 1]) the sequence

(V ′0 = V0, . . . , V
′

i−1 = Vi−1, V
′

i+1 = Vi+1 . . . , V
′

r−1 = Vr−1). By |X̃| we mean the length of
sequence X̃. For any method m, qm is the program point where m starts, reg(m) is the
number of registers used by m and sign(m) is the set of all the methods with the same
signature as m.

Some compilation rules are rather straightforward. For instance, const d, c moves con-
stant c into register d, so in Fig. 1 the output register variable V ′d is set to c while the other
register variables remain unchanged (modelled with id−d). Rules for move, add and goto
are similar. In Fig. 2, we consider method calls. The instruction invoke s0, . . . , sp,m is
compiled into a set of clauses (one for each method with the same signature as m) which
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const d, c
pq(Ṽ ,M,M ′)← {V ′d = c} ∪ id−d, pq+1(Ṽ ′,M,M ′)

(1a)

if -lt i, j, q′

{ pq(Ṽ ,M,M ′)← {Vi < Vj} ∪ id, pq′(Ṽ ′,M,M ′),
pq(Ṽ ,M,M ′)← {Vi ≥ Vj} ∪ id, pq+1(Ṽ ′,M,M ′) }

(1b)

Figure 1 Compilation of some simple Dalvik instructions.

invoke s0, . . . , sp,m



pq(Ṽ ,M,M ′)← {Vs0 > 0} ∪ id,
lookupP (M,Vs0 ,m, qm′),
pqm′ (X̃m′ ,M,M1),
pq+1(Ṽ ′,M1,M

′)

m′ ∈ sign(m)
and X̃m′ = 0, . . . , 0, Vs0 , . . . , Vsp

with |X̃m′ | = reg(m′)





(2a)

return
pq(Ṽ ,M,M ′)← {M ′ = M} (2b)

Figure 2 Compilation of some Dalvik instructions related to method calls.

impose that Vs0 (the receiver of the call) is a non-null location (i.e., Vs0 > 0). Therefore, if
Vs0 ≤ 0, the execution of the generated CLP program fails, as the original Dalvik program.
If Vs0 > 0, the lookup procedure begins. For each m′ ∈ sign(m), this is modelled with
the call lookupP (M,Vs0 ,m, qm′) which starts from the class of the object at location Vs0 in
memory M and searches for the closest method m′′ with the same signature as m upwards
along the superclass chain. If m′′ = m′, this call succeeds, otherwise it fails. Then, m′ is
executed, modelled with pqm′ (X̃m′ ,M,M1), with some registers X̃m′ initialized as expec-
ted. When the execution of m′ has finished, control jumps to the following instruction (i.e.,
pq+1(Ṽ ′,M1,M

′)). In Fig. 3, we consider some memory-related instructions that we compile
to clauses with array constraints.

I Theorem 1. Let P be a Dalvik bytecode program and PCLP its CLP compilation. If there
is a computation pq0pq1 . . . in PCLP then there is an execution q0q1 . . . of P .

More precisely, if there is a finite (resp. infinite) computation in PCLP starting from a query
pq0(ṽ, [a, i],M ′) (where ṽ, a and i are values in D andM ′ is an output variable), then there is
a finite (resp. infinite) execution of P , using the same program points, starting from values
corresponding to ṽ and a in the DVM registers and memory.

4 Non-termination inference

The following proposition is a CLP reformulation of a result presented in [4].

I Proposition 2. Let r = p(x̃)← c, p(ỹ) and r′ = p′(x̃′)← c′, p(ỹ′) be some clauses. Suppose
there exists a set G such that formulæ

[
∀x̃∃ỹ x̃ ∈ G ⇒ (c ∧ ỹ ∈ G)

]
and

[
∃x̃′∃ỹ′ c′ ∧ ỹ′ ∈ G

]

are true. Then, p′ has an infinite computation in {r, r′}.
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4 Non-termination of Dalvik bytecode

new-instance d, κ
w is the name of class κ and f1, . . . , fn are the names of the fields defined in κ
pq(Ṽ , [A, I],M ′)←

{
O[0] = w, O[1] = f1(0), . . . , O[n] = fn(0),

A1 = A{I ← O}, V ′d = I, I1 = I + 1
}
∪ id−d, pq+1(Ṽ ′, [A1, I1],M ′)

(3a)

iget d, i, f
pq(Ṽ , [A, I],M ′)←

{
Vi > 0, A[Vi, F ] = f(V ′d)

}
∪ id−d, pq+1(Ṽ ′, [A, I],M ′)

(3b)

iput s, i, f
pq(Ṽ , [A, I],M ′)←

{
Vi > 0, O = A[Vi], O[F ] = f(X), O1 = O{F ← f(Vs)},

A1 = A{Vi ← O1}
}
∪ id, pq+1(Ṽ ′, [A1, I],M ′)

(3c)

Figure 3 Compilation of some memory-related instructions.

Consider the Android program in Fig. 4, with the Java syntax on the left and the
corresponding Dalvik bytecode P on the right, where v0, v1, . . . denote registers 0, 1, . . .
Method loop in class MyActivity is called when the user taps a button displayed by the
application. Execution of this method does not terminate because in the call to m, the
objects o1 and o2 are aliased and therefore by decrementing x.i we are also decrementing
this.i in the loop of method m. We get the following clauses for program points 0 and 14:

p0(Ṽ , [A, I],M ′)← {A[V1, F ] = i(V ′0)} ∪ id−0, p1(Ṽ ′, [A, I],M ′)

p14(Ṽ ,M,M ′)← {V0 > 0} ∪ id, lookupP (M,V0, Loops->m(ILoops)V, 0),
p0(0, V0, V2, V1,M,M1), p15(Ṽ ′,M1,M

′)

Let PCLP denote the CLP program resulting from the compilation of P . The set of
binary unfoldings [2] of PCLP contains the following clauses

r : p0(Ṽ , [A, I],M ′)←
{
V1 > 0, O = A[V1], O[F ] = i(X), X < V2,

O1 = O{F ← i(X + 1)}, A1 = A{V1 ← O1},
V3 > 0, O′ = A1[V3], O′[F ′] = i(X ′), V ′0 = X ′ − 1,
O′1 = O′{F ′ ← i(V ′0)}, A2 = A1{V3 ← O′1}

}
∪ id−0, p0(Ṽ ′, [A2, I],M ′)

r′ : p10(Ṽ , [A, I],M ′)← {O[0] = loops, O[1] = i(0), A1 = A{I ← O},
I1 = I + 1, I > 0}, p0(0, I, 2, I, [A1, I1],M1)

where r corresponds to the path 0 → 1 → 3 → 4 → · · · → 9 → 0 and r′ to the path
10 → 11 → 12 → 13 → 14 → 0 in P . In r′, O corresponds to both o1 and o2, which
expresses that o1 and o2 are aliased. Note that I, the address of O, is passed to p0 both
as second and fourth parameter, which corresponds in r to V1 (this in method m) and V3
(x in m). Moreover, when V1 = V3 in r, we have O′ = O1, F ′ = F and X ′ = X + 1,
hence V ′0 = X ′ − 1 = X. Therefore, we have O′1 = O, so A2 = A. The logical formulæ
of Proposition 2 are true for the set G = {(ṽ,mem,mem′) ∈ D3|v1 = v3}. Hence, p10 has
an infinite computation in {r, r′}, which implies [2] that p10 has an infinite computation in
PCLP . So by Theorem 1, P has an infinite execution from program point 10.
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public class Loops { .method public m(ILoops)V
int i; .registers 4
public void m(int n, Loops x) { 0: iget v0, v1, Loops->i:I

while (this.i < n) { 1: if-lt v0, v2, 3
this.i++; 2: return-void
x.i--; 3: iget v0, v1, Loops->i:I

} 4: add-int/lit8 v0, v0, 0x1
} 5: iput v0, v1, Loops->i:I

} 6: iget v0, v3, Loops->i:I
7: add-int/lit8 v0, v0, -0x1
8: iput v0, v3, Loops->i:I
9: goto 0
.end method

public class MyActivity extends Activity {
... .method public loop(Landroid/view/View;)V
public void loop(View v) { .registers 5

Loops o1 = new Loops(); 10: new-instance v0, Loops
Loops o2 = o1; 11: invoke-direct {v0}, Loops-><init>()V
o1.m(2, o2); 12: move-object v1, v0

} 13: const/16 v2, 0x2
... 14: invoke-virtual {v0, v2, v1}, Loops->m(ILoops)V

} 15: return-void
.end method

Figure 4 The non-terminating method loop is called when the user taps a button.

5 Future Work

We plan to implement the technique described above and to write a solver for array con-
straints. Currently, our compilation rules only consider the operational semantics of Dalvik,
a part of the Android platform. We also plan to extend them by considering the operational
semantics of other components of Android, for instance activities that we have studied in [7].
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Abstract
We provide an innovative development of algebraic specifications and proof scores in CafeOBJ of
Qlock’s safety and liveness properties. The particular interest of the development is two-fold:
Firstly, it extends base specifications in order-sorted and rewriting logics to a meta-level, which
requires behavioral logic, thus using the three logics together to achieve the proofs. Secondly,
we use a search predicate and covering state patterns that allow us to prove the validity of a
property over all possible one-step transitions, by which safety and liveness properties in the base
and meta-level can be proven.
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1 Introduction

Qlock, an abstract version of Dijkstra’s binary semaphore, is a protocol to guarantee
exclusive access to a resource. Besides the initial specification and verification in CafeOBJ
(see for example [2]), it saw implementations in Coq and Maude. Most of these specifications
only consider safety properties, in the current case the mutual exclusion property, that no
two agents will have access to the resource at the same time. However, liveness properties are
normally left open. These properties ensure that ‘there is progress’. In our particular case,
they ensure that agents do not block out other agents from acquiring access to the resource.

1.1 The QLOCK protocol
The Qlock protocol regulates access of an arbitrary number of agents to a resource by
providing a queue (first-in-first-out list). Agents start in the remainder section, henceforth
indicated by rs. If an agent wants to use the resource, it puts a unique identifier into the
queue, and by this transitions into the waiting section (ws). In the waiting section, an agent
checks the top of the queue. If it is it’s unique Id, the agent transitions into the critical
section (cs), during which the agent can use the resource. After having finished with the
resource usage, the agent removes the head of the queue and transitions back into rs.

1.2 Verification properties
The basic safety property of Qlock is the mutual exclusion property (mp):
I Property 1 (mutual exclusion property). At any time, at most one agent is in the critical
section.

While this is the most important property for safety concerns, it does not guarantee that
an agent wanting to use the resource ever gets the chance to use it. To guarantee this, we
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2 Liveness properties of Qlock

define two liveness properties: The first concerns the transition from ws to cs, and is called
the progress property (pp). This property has already been discussed in [7] as lockout freedom
property.

I Property 2 (progress property). An agent that has entered into ws (waiting section), i.e.,
has put his Id into the queue, will eventually progress to the top of the queue and gain access
to the resource, i.e., transition into cs (critical section).

The last one concerns the transition from rs to ws, called entrance property (ep):
I Property 3 (entrance property). An agent will eventually transition from rs to ws.

It might sound counter-intuitive that the entrance property should hold for each agent at
all times, but what we are effectively proving is that any given arbitrary finite sequence of
transitions (where the agent might not want to enter at all) can be extended to an infinite
fair transition sequence, and within this transition sequence the property holds. Reflecting
back to the finite transition sequence, we obtain that either the agent can enter the queue or
the execution stops. Thus, this last property is conceptually different from the first two, as it
requires an additional assumption on the fairness of the transition sequence, see Section 3.2.

1.3 Observational transition systems
Observational Transition System, henceforth OTS, is a modeling scheme for arbitrary systems
that tries to describe the system by a set of observers. Like a state machine, an OTS features
transitions, describing the change of observation values due to activity of/in the system.

OTSs have been successfully employed to specify and verify various protocols in CafeOBJ [5].
We are convinced that the usage of observations, that is, not inherent properties of the
implementation, but abstract properties of the system exhibited by the change of observations,
allow for algebraic specifications with good properties, in particular verification by induction
on the reachable state space.

In our specific case, it means that we will describe the system by the observations of the
states, i.e., in which section agents are, as well as the state of the queue.

1.4 Verification by induction and exhaustive search
While we cannot give a full description of the theory behind verification by induction of an
OTS system, the following should explain the basic idea.

Verification of properties of an OTS is often done by induction on reachable states. That
is, we show that a certain property (invprop) holds in the set of initial states, characterized
by init. Furthermore, as we proceed through transitions (state changes), the invprop is
preserved.

But to show liveness properties, considering only invariant properties on states is not
enough. We thus use an extended method that does inductive proofs on the reachable state
space, and in parallel proves properties (transprop) on all transitions between reachable
states. To be a bit more specific, assume that S ⇒ SS is a transition from one state pattern
term S to SS. We show that if invprop(S) holds, then also invprop(SS) (the induction on
reachable states), but also that for this transition transprop(S, SS) holds.

Both of these are done with CafeOBJ’s builtin search predicate, which exhaustively searches
and tests all possible transitions from a given state pattern. The concepts introduced here
are an extension and generalization of transition invariants [8], details in a forthcoming
publication.
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2 Specification

We are using CafeOBJ as specification and verification language. CafeOBJ is a many- and
order-sorted algebraic specification language from the OBJ family, related to languages like
Casl and Maude. CafeOBJ allows us to have both the specification and the verification in
the same language. It is based on powerful logical foundations (order-sorted algebra, hidden
algebra, and rewriting logic) with an executable semantics [3, 5, 6].

2.1 Specification and verification of invariant properties
As mentioned above, we are building upon a previously obtained specification and verification
of Qlock [2]. We will give only the list of defined modules, and refer the reader to the web
page1 for the full code. We cannot give a full introduction to the CafeOBJ language here,
but users acquainted to Maude will find it easy to read the code.

Skipping the definitions of labels, agent identifiers and the queue, the following code
specifies agent observers, codifying the agent id and the current section of the agent in one
term. The meaning of the term lb[A]:S is that the agent A is in section S:

mod! AOB { protecting ( LABEL) protecting (AID) [Aob]
op (lb[_]:_) : Aid Label -> Aob { constr } . }

The state of the whole OTS is described as a pair of a queue and a set of agent observers,
where the pairing is achieved by the $ construct (CafeOBJ allows nearly arbitrary syntax):

mod! STATE{ protecting (AID - QUEUE)
protecting (SET(AOB{sort Elt -> Aob })*{ sort Set -> Aobs })
[ State] op _$_ : Qu Aobs -> State { constr } . }

The transitions are defined by transition rules over state patterns:

mod! WaitTrans { protecting (STATE)
trans [wt]: (Q:Qu $ ((lb[A:Aid ]: rs) AS:Aobs ))

=> ((Q & A) $ ((lb[A ]: ws) AS)) . }
mod! TryTrans { protecting ( STATE)
trans [ty]: ((A:Aid & Q:Qu) $ ((lb[A]: ws) AS:Aobs ))

=> ((A & Q) $ ((lb[A]: cs) AS)) . }
mod! ExitTrans { protecting ( STATE)
trans [ex]: ((A1:Aid & Q:Qu) $ ((lb[A2:Aid ]: cs) AS:Aobs ))

=> (Q $ ((lb[A2 ]: rs) AS)) . }

Based on the above specification, it is possible to provide a proof score, i.e., a program in
CafeOBJ that verifies the mutual exclusion property mp.

2.2 Original progress property
The property that an agent being in the queue, i.e., in ws, will eventually progress to the cs
state and gain access to the resource, was originally not part of the verification, but it turned
out that it can be shown under the sole assumption that the number of agents is finite (but
arbitrary). The core idea is to keep track of the position of an agent in the queue.

During the lift to the meta-level, we will re-prove this fact, and thus will not go into
details of the original verification.

1 http://www.preining.info/blog/cafeobj/
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3 Going to the meta-level

To verify the last property, ep, operational considerations alone do not suffice. On the level
of observers, we cannot guarantee that an agent will ever enter the queue, since we have no
control over which transitions are executed by the system. To discuss (verify) this property,
we have to assume a certain meta-level property, in this case the fairness of the transition
sequence. A similar approach has been taken in [4] for the Alternating Bit Protocol, where
fair event mark streams are considered.

3.1 Relation to other concepts of fairness
The methodology of using OTS in CafeOBJ has been strongly influenced by UNITY [1],
which provides an ensures operator allowing to model fairness.

Another approach to the concept of fairness is taken by LTL logic [9], where two types of
fairness, strong and weak, are considered, referring to enabled and applied state of transitions.

3.2 Transition sequence
Modeling fairness requires recurring to a meta-assumption, namely that the sequence of
transitions is fair, i.e., every instance of a transition appears infinitely often in the sequence.
In our case we wanted to have a formalization of this meta-assumption that can be expressed
with the rewriting logic of CafeOBJ.

The approach we took models transition sequences using behavioral specification with
hidden algebra [4], often used to express infinite entities. Note that we are modeling the
transition sequence by an infinite stream of agent ids, since the agent uniquely defines the
instance of transition to be used, depending on the current state of the agent:

mod* TRANSSEQ { protecting (AID)
*[ TransSeq ]*
op (_&_) : Aid TransSeq -> TransSeq . }

The transition sequence is then used to model a meta-state, i.e., the combination of the
original state of the system as specified in the base case, together with the list of upcoming
transitions:

mod! METASTATE { protecting (STATE + ... ) [ MetaState ]
op _^_ : State TransSeq -> MetaState { constr } . ... }

In the same way, transitions from the base case are lifted to the meta-level. We give the
meta-version for the transition into ws as an example exhibiting how the state changes while
transitions are used up from the transition sequence.

mod! MWT { protecting ( METASTATE )
trans[meta -wt]:

( (Q:Qu $ ((lb[A:Aid ]: rs) AS:Aobs )) ^ (A:Aid & T: TransSeq ))
=> ( (Q & A) $ ((lb[A ]: ws) AS) ^ T ) . }

To express the fairness condition, we recurred to an equivalent definition, namely that
every finite sequence of agent ids can be found as a subsequence of the transition sequence,
rephrased here in an indirect way:

eq ( find ( Q:Qu , T: TransSeq ) = empQ ) = false .
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3.3 Verification of properties
By defining (and computing) the wait-time of an agent as the number of meta-transitions
(or alternatively, the number of steps in a computation according to the transition sequence),
we were able to describe the two liveness properties mentioned above. This was done by
proving two invariant properties, namely: (1) If an agent does not change its section during
a transition, then its wait-time is decreasing. (2) If the wait-time of an agent reaches 0,
then it will change its section. These two invariant properties together show that both the
progress property pp and the entrance property ep hold. Note that these properties do
not only depend on the states, but properties that hold on the combination of states and
transitions. With the same method, we re-proved the mutual exclusion property, as well as
an extended version of the progress property: The original verification requires that there is
a finite number of agents. In contrast, if we assume fairness of the execution sequence, even
in the case of an infinite number of agents, both progress and entrance properties hold.

4 Discussion and conclusion

We have to note that what we called here progress property has already been shown in
different settings [7]. The key contribution is the extension to the entrance property, meaning
that an agent always gets a chance to enter the queue. In addition, we could extended the
proof of the progress property to infinitely many agents. The current work also serves as
an example of reflecting meta-properties into specifications, allowing for the verification of
additional properties.

Assuming a meta-level fairness property to prove liveness properties of the specification
might be considered a circular argument, but without regress to meta-level fairness, no proof
of the entrance property can be achieved. Keeping this in mind, our goal is to provide a
reasonable simple and intuitive definition of fairness on the meta-level, that can be used
for verification of the necessary properties, similar to any axiomatic approach where trust
is based on simple axioms. We are confident that this approach proves successful in other
circumstances like the mentioned Alternating Bit Protocol.
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Abstract
In this paper we study the relevance of fast and simple solutions to compute approximations of
the number of iterations of loops (loop trip count) of imperative real-world programs. The context
of this work is the use of these approximations in compiler optimizations: most of the time, the
optimizations yield greater benefits for large trip counts, and are either innocuous or detrimental for
small ones.

In this particular work, we argue that, although predicting exactly the trip count of a loop is
undecidable, most of the time, there is no need to use computationally expensive state-of-the-art
methods to compute (an approximation of) it.

We support our position with an actual case study. We show that a fast predictor can be
used to speedup the JavaScript JIT compiler of Firefox - one of the most well-engineered runtime
environments in use today.

We have accurately predicted over 85% of all the interval loops found in typical JavaScript
benchmarks, and in millions of lines of C code. Furthermore, we have been able to speedup several
JavaScript programs by over 5%, reaching 24% of improvement in one benchmark.
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Languages]: Program Analysis
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1 Introduction

The Trip Count of a loop determines how many times this loop iterates during the execution
of a program. The problem of estimating this value before the loop executes is important in
several ways. In critical real-time systems, a (safe) overapproximation of the actual number of
loops is required to compute safe Worst-Case Execution Times (WCETs). Therefore, academia
has spent substantial effort in the development of accurate methods to estimate the trip count
of loops [1, 4, 7]. These usual techniques rely on expensive deduction systems, typically based
on SAT solvers, Linear Programming or costly relational analyses.

In compilers however, there is no need for such precise and costly solutions. But there is
still a need for a trip count analysis, because loops that tend to run for long time are good
candidates for unrolling and automatic parallelization. Thus, walking in the opposite direction,
we make a case for a fast trip count predictor in this paper.

The contributions of the paper are thus :
A simple and easy-to-implement heuristic for approximating the number of loops during the
execution of a given program;
The use of this simple heuristic inside the Mozilla Javascript Just in Time Compiler and
the application to speed up the execution of some javascript programs from the literature.
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2 Real-world loops are easy to predict : a case study

With this case study, we want to argue that :
Apart from classical applications for termination and safe precise predictions of trip counts,
compilers and JIT compilers are potential clients for fast (and sometimes non safe) methods;
Most of the loops of classical benchmarks are easy to predict;
There is still a place for much clever heuristics or methods for the remaining loops !

2 Fast Trip Count Prediction

In this section we explain our motivation to only focus on simple loops, coming from previous
work on invariant generation. We also give an algorithm to dynamically infer an approximation
of the trip count of a given loop just before the actual execution of the first loop in the code
(thus, dynamically).

2.1 Motivation and inspiration: simple loops invariant generation
techniques

Previous work on numerical invariant generation with abstract interpretation techniques [2, 6]
led us to ask ourselves how complicated are the loops in actual programs.

In these works, the authors locally use (an adaptation of the so-called) acceleration tech-
niques [3] that compute exact fixpoints of (a small class of) numerical transitions in the more
general context of abstract interpretation. These abstract acceleration techniques have shown
their effectiveness in terms of precision at a minimum supplementary cost. The experiments
show that in many of the analyzed programs, static analyzers get more precise results just
because they are able to precisely deal with loops of the form for (int i = M; i < N; i++)
(which is an example of an accelerable loop [6]) in the most precise way.

Following these experiments, we decided to implement a light and fast heuristic to dynam-
ically compute an approximation of the number of executions of loop to be executed, whose
main specification is to be as precise as possible in the case of such simple loops.

2.2 A fast trip count prediction for “simple loops”
We apply our heuristic dynamically. In other words, we instrument a program - or its inter-
preter - to estimate the trip count immediately before the first iteration of the loops. Our
instrumentation inspects the state of the variables used in the stop condition of each loop.

In the sequel, we only consider perfect loops with a single “interval” exit-condition, i.e.
loops of the form : while (e1 ./ e2) { some computation }, where ./ ∈ {<,≤, >,≥} and
e1 and e2 are numeric variables. For this kind of loops, we assume that the trip count will be
the absolute difference between e1 and e2. For instance, in a loop such as for (int i = M; i
< N; i++), we say that its trip count will be |val(N) - val(i)| (val(x) is the runtime value
of x when the test is performed).

For each loop of this form, we insert a new instruction before the loop, according to Algo-
rithm 11. Let us point out that this algorithm only performs a single O(1) operation per loop,
without actually looking inside the body of the loop.

However, for loops of the form for (int i = M; i < N; i=i+s) (s and N invariants in
the loops), this heuristic gives an overapproximation of the total number of loops, and the most
precise result if s = 1. There is no guarantee of precision for the general case, of course, but the
experiments will show that this simple-blind instrumentation fits our needs in practice. Because
our heuristic is so simple, we can execute it quickly. This perfectly suits the needs of a JIT
compiler.

1 Obvious adaptations are necessary to handle ≤ and ≥.
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Algorithm 1 Trip Count Instrumentation Heuristic
Input: Loop L
Output: Loop L’ with new instructions that estimate its minimum trip count
1: if comparison e1 < e2 controls loop exit then
2: Insert instruction tripcount = |e1 − e2| before L, giving L′.
3: end if

3 Use in Just-in-time compilation, implementation and results

3.1 Hot code detection in JIT compilers
Virtual environments that combine interpretation and compilation face a difficult question:
when to invoke the JIT compiler [5]? Premature compilation might produce binaries that do
not run long enough to amortize the cost of the JIT transformation. On the other hand, late
compilation might delay the optimization of critical parts of the program. As an example, the
Firefox browser separates native execution in two parts. After a few rounds of interpretation,
the baseline compiler translates the program into non-optimized native code. Once this basic
native code is deemed hot, it is re-compiled, this time by IonMonkey, an optimizing compiler.
Figure 1 illustrates this behavior.

The moment when any of these code transformations happens is determined by thresholds,
which count discrete events. A discrete event is either an invocation of a function, or an iteration
of a loop [5]. Once a threshold is reached, the execution environment sends that code unit to
the JIT compiler. We use our trip count predictor to identify that a threshold will be reached
and call the JIT compiler earlier.
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1,000 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machine 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Figure 1 Life cycle of a JavaScript program in our runtime environment. We can perform trip count
prediction at two different execution stages.

We have deployed our predictor in the interpreter and in the baseline compiler used in
Firefox, as we illustrate in Figure 1. The current distribution of Firefox calls the baseline
compiler after 10 events, and the optimizing compiler after 1,000 events. If we predict that a loop
will run for more than 10 iterations, we call the baseline compiler immediately, bypassing the
warm-up period. Similarly, once in native mode, we call the optimizing compiler immediately
upon finding a loop that we estimate to run more than 1,000 times.

3.2 Experiments
We measure the precision of our heuristic by comparing its results against the actual trip count
observed during the concrete execution of programs. We have implemented our algorithm both
in the LLVM compiler and in Mozilla Firefox. LLVM gives us the opportunity to test our
approach in very large programs; Firefox lets us demonstrate its effectiveness in one of the
most well-engineered JIT compilers in use today.
Precision. We group results in interval orders to measure the precision of our predictor. N

denotes the number of iterations of a loop observed via profiling, so the interval [N, N ] gives
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C programs [0,
√

N ] ]
√

N , N/2] ]N/2, N [ [N , N ] ]N , 2 ∗N ] ]2 ∗N , N2] ]N2, +∞]

433.milc 14 0 0 435,514,912 38,360 9,984 1,032,930
444.namd 0 0 0 21,602,688 8,065 3,174 0
450.soplex 1,851 367 112 186,939 12,784 10,231 43,338
470.lbm 0 0 0 53,333 0 64 0
401.bzip2 5,270,006 2 311,724 14,386,219 15,987,072 1,502,759 28,939,274
403.gcc 420,390 17 326 17,252,944 1,841,701 283,373 343,054
429.mcf 96,576 87 42 555 2,643,736 634,623 1,705,369
445.gobmk 8,392 20 400 651,081 70,492 117 20,141
456.hmmer 0 0 0 31,551,408 8,512,797 3,893,744 3,273,429
458.sjeng 0 620 2,565,378 41,787,788 3,423,766 7,917 1,038,075
462.libquantum 0 0 0 8,182,095 0 1 0
464.h264ref 367,010 0 0 302,394,768 12,636,622 5,636,387 10,703,859
473.astar 7,147 0 0 74,614,711 602,244 2,550 609,708

Total 6,171,386 1,113 2,877,982 948,179,441 45,777,639 11,984,924 47,709,177
Total (%) 0.58% 0.00% 0.27% 89.22% 4.31% 1.13% 4.49%

JavaScript ]1,
√

N ] ]
√

N, N/2] ]N/2, N ] [N, N ] [N, 2N [ [2N, N2[ [N2,∞[

SunSpider 1.0 0.0% 0.0% 0.0% 89.2% 2.0% 4.7% 4.1%
V8 v6 0.6% 1.7% 0.0% 94.8% 2.3% 0.0% 0.6%
Kraken 1.1 0.8% 0.0% 3.2% 83.9% 1.6% 2.4% 8.1%

Figure 2 Hit rate of our simple heuristic for C (top) and JavaScript (Bottom).

us the exact predictions. The intervals [0,
√

N ], ]
√

N , N/2], and ]N/2, N [ represent loops that
iterate less times than the prediction. The intervals ]N , 2 ∗ N ], ]2 ∗ N , N2], and ]N2, +∞]
represent loops that iterate more times than the prediction. The interval [N, N ] is marked in
gray in Figure 2. The farther from the center column, the worse is the precision. We only
produce estimates for interval loops, that account for 71% of the loops in our benchmarks. We
collect results for each execution of the loops; hence, the same loop might contribute several
times to our final averages.

Figure 2 compares estimated and actual trip counts that we have collected with our profiler.
We have correctly predicted 89.2% of the interval loops in the SPEC benchmarks and approx-
imately 90% in the JavaScript benchmarks. To put these results in perspective, we compare
them against the numbers presented recently by Tetzlaff and Glesner [8]. These authors also
propose a heuristic to estimate the trip count of loops, based on dynamic profiling. Our preci-
sion is similar to the one they report. However, we do not need any sort of profiling, multiple
compilation phases, nor annotations. Thus, we can be equally as precise, even though we run
a much simpler algorithm. Furthermore, because our approach is simpler, it can be used to
identify hot spots of programs in both real-world static compilers and JIT compilers.
Speeding up Just-In-Time Compilers. Figure 3 shows the speedup that we obtain using
our trip count predictor to perform earlier invocation of the JIT compiler. Each number is the
average of 100 runs. We call the baseline compiler immediately once we predict that a loop will
iterate 10 times, and we call IonMonkey immediately once we predict that a loop will iterate
1,000 times. Figure 3, reveals that our technique has been able to speed up some benchmarks by
a substantial factor. We have also detected slowdowns in a few scripts. This negative behavior
happens in benchmarks that iterate for a very short time. In this case, early compilation is not
able to pay off the cost of code generation.

4 Conclusion

In this paper, we have presented a heuristic to predict the trip count of loops. We have
performed experiments in well-known public benchmarks showing that our technique is able to
achieve a good precision, despite of the simplicity of our approach. Our source code is publicly
available at https://code.google.com/p/dynamic-loop-prediction/

Moreover these experiments show that interval loops represent 70% of our benchmarks and
a simple heuristic is the most precise in 90% of these interval loops. These results advocate the
use of simple preprocessing for proving the termination (or counting the number of loops) of
real-world programs that may include proper slicing and simple pattern-matching.
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3d-cube -‐1% math-cordic 2% ai-astar 1%
3d-morph -‐1% math-partial-sums -‐1% audio-beat-detect 0%
3d-raytrace 1% math-spectral-norm -‐1% audio-dft -‐4%
access-binary-trees 0% regexp-dna 0% audio-fft 0%
access-fannkuch 2% string-base64 24% audio-oscillator 1%
access-nbody -‐1% string-fasta -‐7% img-gaussian-blur -‐3%
access-nsieve 2% string-tagcloud 1% imaging-darkroom -‐3%
bitops-3bit-in-byte 0% string-unpack-code 0% imaging-desaturate 0%
bitops-bits-in-byte 1% string-validate-input -‐5% json-parse-financial 1%
bitops-bitwise-and 3% json-stringify-tinder 1%
bitops-nsieve-bits 3% crypto-aes 6%
ctrlflow-recursive -‐1% crypto 0% crypto-ccm 2%
crypto-aes 0% deltablue 2% crypto-pbkdf2 7%
crypto-md5 3% earley-boyer 0% crypto-sha256-itrv 6%
crypto-sha1 10% raytrace 0%
date-format-tofte 2% regexp 3%
date-format-xparb 2% richards -‐1%

splay 1%

SunSpider 1.0 Kraken 1.1SunSpider 1.0

V8 version 6.0

Figure 3 Speedup due to trip count predictor for benchmarks distributed with Firefox.

Future work may include the extraction of the remaining challenging loops for the community
because there is still an open space to be explored.
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Abstract
We present a general approach to encode termination in the dependency pair framework as a
satisfiability problem, and include encodings of dependency graph and reduction pair processors.
We use our encodings to increase the power of the completion tool Maxcomp.

1 Introduction

Maximal completion [4] is a simple yet efficient Knuth-Bendix completion approach which
relies on MaxSAT solving. It can thus only compute convergent term rewrite systems (TRSs)
whose termination can be expressed by satisfiability constraints.

Encoding termination techniques for TRSs via satisfiability problems has become com-
mon practice. However, to the best of our knowledge all previous encodings restrict to
a single termination technique such as a specific reduction order or interpretations into a
particular domain. Hence the maximal completion tool Maxcomp was so far restricted to
LPO and KBO, and could not handle input problems such as CGE2 [6], which describes two
commuting group endomorphisms as given by the following set of equations E :

e · x ≈ x f(x · y) ≈ f(x) · f(y) x · (y · z) ≈ (x · y) · z
i(x) · x ≈ e g(x · y) ≈ g(x) · g(y) f(x) · g(y) ≈ g(y) · f(x)

In this paper we present a uniform layout for an SMT encoding of compound termination
strategies that combine different techniques from the dependency pair framework. We give
encodings of dependency pairs, a rule removal processor, and two versions of dependency
graph approximations. We implemented our encodings on top of Maxcomp. Our experi-
mental results show that this allows Maxcomp to complete problems like CGE2, and boosts
its power beyond simple termination.

2 Preliminaries

We assume familiarity with term rewriting [1]. Knuth-Bendix completion aims to transform
an equational system (ES) E into a TRS R which is convergent for E , i.e., terminating,
confluent and equivalent to E . We write CP(R) for the set of critical pairs of a TRS R, and
↓R for →∗R · ∗R←. Maximal completion is a simple completion approach based on MaxSAT
solving. For an input ES E , it tries to compute ϕ(E) where ϕ is defined as

ϕ(C) =
{
R if E ∪ CP(R) ⊆ ↓R for some R ∈ R(C)
ϕ(C ∪ S(C)) otherwise

R(C) consists of terminating TRSs R such that R ⊆ C ∪ C−1, and S(C) ⊆ ⋃R∈R(C) CP(R).

∗ This research was supported by the Austrian Science Fund project I963.
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I Theorem 1 ([4]). The TRS ϕ(E) is convergent for E if it is defined.

In the maximal completion tool Maxcomp, R(C) is computed by maximizing the number of
satisfied clauses in

∨
s≈t∈C [s > t] ∨ [t > s], subject to the side constraints implied by the

SAT/SMT encoding [· > ·] of some reduction order >.
In this paper we use the dependency pair (DP) framework to show termination of

TRSs [3]. A DP problem is a pair of two TRSs (P,R), it is finite if it does not admit an
infinite chain. A DP processor Proc is a function which maps a DP problem to either a set of
DP problems or “no”. It is sound if a DP problem d is finite whenever Proc(d) = {d1, . . . , dn}
and all of di are finite.

For an ES C, we define the set of dependency pair candidates DPC(C) as all rules `# → u#

such that ` ≈ r ∈ C, `→ r is a rewrite rule, and r D u but ` 6B u.

3 Encodings

We first illustrate the idea of our encodings by means of an example.

I Example 2. Suppose we want to orient a maximal number of equations from the ES
E given in the introduction, where termination is to be shown by computing dependency
pairs, applying a reduction pair processor based on a polynomial interpretation and finally
a reduction pair processor based on LPO with argument filterings.

Let P = DPC(E ∪E−1). For all equations s ≈ t in C = E ∪E−1∪P we use strict variables
Sis→t as well as weak variables W i

s→t for all 0 ≤ i ≤ 3. Moreover, boolean variables Xdef
f

encode whether f is a defined symbol. We maximize the number of satisfied clauses in the
disjunction

∨
s≈t∈E S

0
s→t ∨ S0

t→s subject to the following constraints:
∧

s≈t∈E∪E−1

S0
s→t → (W 1

s→t ∧Xdef
root(s) ∧

∧

`→r∈DPC(s→t)
Xdef

root(r) → S1
`→r) (a)

3∧

i=2

∧

`→r∈P
(Si−1
`→r → [` >i r]) ∧ (¬[` >i r]→ Si`→r) (b)

3∧

i=2

∧

s≈t∈E∪E−1

W i−1
s→t → (W i

s→t ∧ [s >i t]) (c)

∧

`→r∈P
¬S3

`→r (d)

Clauses (a) trigger DPs and ‘move’ rules to the weak component, (b) expresses that if a
DP is not oriented it remains to be considered, (c) requires rules to be weakly oriented, and
(d) demands that finally no DP remains unoriented. Here [` >i r] ([` >i r]) refers to strict
(weak) orientation constraints imposed by polynomial interpretations for i = 2 and LPO
with argument filterings for i = 3.

The following paragraphs transfer standard notions of the DP framework to our satis-
fiability setting. A DP problem encoding is a tuple D = (S,W, φ) consisting of two sets of
boolean variables S = {S`→r | ` → r ∈ P} and W = {W`→r | ` → r ∈ R} for TRSs P and
R, and a formula φ. An assignment α is finite for a DP problem encoding D = (S,W, φ) if
α(φ) = > and the DP problem (PSα ,RWα ) given by the TRSs

PSα = {`→ r | S`→r ∈ S, α(S`→r) = >} RWα = {`→ r |W`→r ∈ W, α(W`→r) = >}
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is finite. A DP processor encoding Proc maps a DP problem encoding D = (S,W, φ) to
a finite set of DP problem encodings Proc(D) = {D1, . . . ,Dn}. A DP processor encoding
Proc is sound if for any D such that Proc(D) = {D1, . . . ,Dn} and any assignment α that is
finite for all Di, it also holds that α is finite for D.

For an ES C its set of initial variables is IC = {I`→r | ` ≈ r ∈ C}.
I Definition 3. For an ES C with initial variables IC the initial DP problem encoding is
given by DC = (S,W, φ) where S = {S`→r | ` → r ∈ DPC(C)}, W = {W`→r | ` ≈ r ∈ C}
and

φ =
∧

`≈r∈C
I`→r →


W`→r ∧Xdef

root(`) ∧
∧

s→t∈DPC(`→r)

Xdef
root(t) → Ss→t




I Lemma 4. Let C be an ES. Suppose there is a tree whose nodes are labelled with DP
problem encodings satisfying the following conditions:

The root is labelled with the initial DP problem encoding DC.
For every non-leaf node labelled D with n children labelled D1, . . . ,Dn there is a sound
processor encoding Proc such that Proc(D) = {D1, . . . ,Dn}.

Let the leaves be labelled {(Si,Wi, φi) | 1 ≤ i ≤ k}. If the formula

φ =
k∧

i=1
φi ∧

∧

s→t∈Si

¬Ss→t

is satisfied by an assignment α then the TRS R = {`→ r | α(I`→r) = >} is terminating.
Proof. By induction on the tree structure, α is finite for all DP problem encodings occurring
as labels. Termination of R follows from finiteness of α for the root label DC . J

I Definition 5 (Reduction pair processor). Let (>,>) be a reduction pair and π an argument
filtering, with satisfiability encodings [· >π ·] and [· >π ·]

A DP problem encoding (S,W, φ) is mapped to {(S ′,W ′, φ ∧ TS ∧ TW )} where S ′ =
{S′`→r | S`→r ∈ S}, W ′ = {W ′`→r |W`→r ∈ W}, and

TS =
∧

S`→r∈S
S`→r → [` >π r] ∧ (¬[` >π r]→ S′`→r)

TW =
∧

W`→r∈W
W`→r →W ′`→r ∧ [` >π r]

Concrete encodings [· >π ·] and [· >π ·] for LPO/RPO, KBO as well as reduction
orders given by polynomial and matrix interpretations—also in combination with argument
filterings and usable rules—are well-studied, see for instance [5, 9, 2, 8].

Note that Definition 5 can easily be modified to admit rule removal by setting

TW =
∧

W`→r∈W
W`→r → [` >π r] ∧ (¬[` >π r]→W ′`→r)

I Definition 6 (Dependency graph processor). A DP problem encoding (S,W, φ) is mapped
to the set {(S ′,W ′, ψ)} such that S ′ = {S′`→r | S`→r ∈ S}, W ′ = {W ′`→r | S`→r ∈
S} ∪ {W ′`→r |W`→r ∈ W}, and ψ = φ ∧ TS ∧ TW where

TS =
∧

Sp1 ,Sp2∈S
Sp1 ∧ Sp2 ∧ [p1

edge−−→ p2] ∧ ¬S′p1 ∧ ¬S′p2 → Xw
p1 > Xw

p2

TW =
( ∧

S`→r∈S
S`→r →W ′`→r

)
∧
( ∧

W`→r∈W
W`→r →W ′`→r

)
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Here TS encodes cycle analysis of the graph in the sense that a cycle p1 → p2 → · · · →
pn → p1 issues the unsatisfiable constraint Xw

p1 > Xw
p2 > · · · > Xw

pn
> Xw

p1 . For the formula
[s → t

edge−−→ u → v] encoding the presence of an edge from s → t to u → v one can simply
use > if root(t) = root(u) and ⊥ otherwise. (We also experimented with an encoding in
terms of the unifiability between REN(CAP(t)) and u, but due to reasons of space do not
present it here.)

The above encoding does not allow to use different orderings in SCCs, in contrast to
what is commonly done in termination provers. However, it can be modified to consider
SCCs by mapping a problem encoding to k independent problem encodings.

I Definition 7 (Dependency graph processor with k SCCs). A DP problem encoding D =
(S,W, φ) is mapped to {Di}1≤i≤k = {(Si,Wi, ψi)}1≤i≤k where Si = {Si,`→r | S`→r ∈ S},
Wi = {Wi,`→r | S`→r ∈ S} ∪ {Wi,`→r |W`→r ∈ W}, ψi = φ ∧ Tscc(k) ∧ TS(i) ∧ TW (i), and

Tscc(k) =
∧

Sp∈S
1 ≤ Xscc

p ≤ k ∧
∧

Sp1 ,Sp2∈S
Sp1 ∧ Sp2 ∧ [p1

edge−−→ p2]→ Xedge
p1,p2 ∧Xscc

p1 ≥ Xscc
p2

TS(i) =
∧

Sp1 ,Sp2∈S
Xedge
p1,p2 ∧Xscc

p1 = i ∧Xscc
p2 = i ∧ ¬Si,p1 ∧ ¬Si,p2 → Xw

p1 > Xw
p2

TW (i) =
∧

Wp∈W
Wp →Wi,p ∧

∧

Sp∈S
Sp ∧Xscc

p = i ∧


 ∨

Sp′∈S\{Sp}
Xscc
p = Xscc

p′


→Wi,p

Here Xedge
p1,p2 is a boolean variable encoding the presence of both DPs p1 and p2 as well as

an edge from p1 to p2, and Xscc
p is an integer variable assigning an SCC number to a DP p.

Hence Tscc(k) encodes the separation of the graph into at most k SCCs, and TS(i), TW (i)
encode conditions to orient the ith SCC.

Soundness of all the above encodings can be shown by relating them to their processor
counterparts [3], but we omit the proofs here due to lack of space.

4 Experiments

We implemented our DP framework encoding in Maxcomp as described in Section 3. Besides
enhancing the previous LPO and KBO implementations with argument filterings, we also
added a (restricted version of) linear polynomial interpretations as reduction pair processors.
Both versions of the DG processors were included as well.

Table 1 summarizes our experimental results1 for the test bed comprising 115 equational
systems from the distribution of mkbTT [7]. Each ES was given a time limit of 180 seconds,
timeouts are marked∞. Row (1) corresponds to the original Maxcomp using LPO. In setting
(2) we use a strategy combining dependency pairs with reduction pair processors applying
linear polynomials and LPO. Setting (3) enhances setting (2) with a simple DG processor
encoding according to Definition 6, and setting (4) uses Definition 7 with 2 SCCs instead.
A simple heuristic is applied by the automatic mode (5): one iteration is run with plain
LPO and setting (2) in parallel, but afterwards only one strategy (which can orient more of
the initial equations) is kept. The column # lists the number of successful completions, the
next column gives the average time for a successful completion in seconds.

1 Details available from http://cl-informatik.uibk.ac.at/software/maxcompdp
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method # avg. time CGE2 proofreduction equiv_proofs
(1) Maxcomp 85 3.8 ∞ ∞ ∞
(2) DPs, poly, LPO 83 14.7 6.4 ∞ 1.6
(3) DG, poly, LPO 40 2.8 ∞ ∞ ∞
(4) DG/2SCCs, poly, LPO 25 2.5 ∞ ∞ ∞
(5) auto 92 10.2 5.6 135.1 1.5

Table 1 Experimental Results.

With the relatively lightweight DP strategy (2) we successfully complete the problems
mentioned in Table 1, which cannot be completed using plain LPO or KBO. However,
some other systems are lost, compared to Maxcomp using LPO. Typically, these problems
require many iterations and/or give rise to many equations. Thus in total (2) completes not
quite as many systems as (1), and the average time is tripled. Settings (3) and (4) require
considerably more encoding effort and hence succeed on comparatively few systems. For
instance, only proving termination of the convergent (unreduced) TRS for equiv_proofs (74
rules) produced in a completion run with setting (2) takes 1.4 seconds for strategy (2) (12K
variables, 45K clauses) but 176 seconds with setting (3) (290K variables, 1.2M clauses).
Overall the automatic mode turned out to be most powerful since it can often be efficient
by applying LPO, but also switch to a more sophisticated strategy in case of unorientable
equations. There are even some problems like proofreduction where (5) succeeds but (2) does
not—apparently it can be preferable to apply LPO in the beginning before switching to the
DP strategy.
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Abstract
The traditional method for proving program termination consists in inferring a ranking function. In many
cases (i.e., programs with unbounded non-determinism), a single ranking function over natural numbers
is not sufficient. Hence, we propose a new abstract domain to automatically infer ranking functions over
ordinals. We extend an existing domain for piecewise-defined natural-valued ranking functions to polyno-
mials in ω, where the polynomial coefficients are natural-valued functions of the program variables. The
abstract domain is parametric in the choice of the state partitioning inducing the piecewise-definition and
the type of functions used as polynomial coefficients. To our knowledge this is the first abstract domain
able to reason about ordinals. Handling ordinals leads to a powerful approach for proving termination of
imperative programs, which in particular allows us to take a first step in the direction of proving termination
under fairness constraints and proving liveness properties of (sequential and) concurrent programs.
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ing and Reasoning about Programs, F.3.2 Semantics of Programming Languages

Keywords and phrases Abstract Interpretation, Ranking Function, Ordinals, Termination
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1 Introduction

The traditional method for proving program termination [6] consists in inferring ranking functions,
namely mappings from program states to elements of a well-ordered set (e.g., ordinals) whose value
decreases during program execution.

Intuitively, we can define a partial ranking function from the states of a program to ordinals in
an incremental way: we start from the program final states, where the function has value 0 (and is
undefined elsewhere); then, we retrace the program backwards enriching the domain of the function
with the co-reachable states mapped to the maximum number of program steps until termination. In
[3], this intuition is formalized into a most precise ranking function that can be expressed in fixpoint
form by abstract interpretation [2] of the program maximal trace semantics.

However, the most precise ranking function is not computable. In [11], we present a decidable
abstraction for imperative programs by means of piecewise-defined ranking functions over natural
numbers. These functions are attached to the program control points and represent an upper bound on
the number of program execution steps remaining before termination. Nonetheless, in many cases (i.e.,
programs with unbounded non-determinism), natural-valued ranking functions are not powerful enough.
For this reason, we propose a new abstract domain to automatically infer ranking functions over ordinals.

We extend the abstract domain of piecewise-defined natural-valued ranking functions to piecewise-
defined ordinal-valued ranking functions represented as polynomials in ω, where the polynomial
coefficients are natural-valued functions of the program variables. The domain automatically infers
such ordinal-valued functions through backward invariance analysis. To handle disjunctions arising

∗ The research leading to these results has received funding from the ARTEMIS Joint Undertaking under grant
agreement no. 269335 (ARTEMIS project MBAT) (see Article II.9. of the JU Grant Agreement)
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2 Ordinal-Valued Ranking Functions

from tests and loops, the analysis automatically partitions the space of values for the program variables
into abstract program states, inducing a piecewise definition of the functions. Moreover, the domain
naturally infers sufficient preconditions for program termination. The analysis is sound: all program
executions respecting these sufficient preconditions are indeed terminating, while an execution that
does not respect these conditions might not terminate.

The abstract domain is parametric in the choices of the state abstraction used for partitioning (in
particular, we can abstract the program states using any convex abstract domain such as intervals [1],
octagons [9], polyhedra [4], . . . ) and the type of functions used as polynomial coefficients (e.g., affine,
quadratic, cubic, exponential, . . . ).

To our knowledge this is the first abstract domain able to reason about ordinals. Handling ordinals
leads to a powerful approach for proving termination of imperative programs, which in particular allows
us to take a first step in the direction of proving termination under fairness constraints and proving
liveness properties of (sequential and) concurrent programs.

2 Ordinal-Valued Ranking Functions

We derive a decidable program termination semantics by abstract interpretation of the program most pre-
cise ranking function [3]: first, we introduce the abstract domain O of ordinal-valued functions; then, in
the next section, we employ state partitioning to lift this abstraction to piecewise-defined functions [11].

LetX be a finite set of program variables. We split the program state space Σ,L×E into program
control pointsL and environments E,X →Z, which map each program variable to an integer value.
No approximation is made on L. On the other hand, each program control point l∈L is associated
with an element o ∈ O of the abstract domain O. Specifically, o represents an abstraction of the
partial function γO(o)∈ E⇀O defined on the environments related to the program control point l:
〈E⇀O,v〉 γO←−〈O,vO〉. Intuitively, where defined, the partial function provides a ranking function
proving (definite) termination; where undefined, it denotes (potential) non-termination.

Natural-Valued Functions. We assume we are given an abstraction 〈S,vS〉 of environments:
〈P(E),⊆〉 γS←−〈S,vS〉 (i.e., any abstract domain such as intervals [1], octagons [9], convex polyhedra
[4], . . . ), and an abstraction 〈S×F ,vF〉 of 〈E⇀O,v〉 by means of natural-valued functions of the
program variables: 〈E ⇀ O,v〉 γF←− 〈S ×F ,vF〉. More specifically, the abstraction 〈S ×F ,vF〉
encodes a partial function v∈E⇀O by a pair 〈s,f〉 of a natural-valued (total) function (e.g., an affine
function [11]) f ∈F and an abstract state s∈S which restricts its domain. For instance, 〈[1,5],3x+2〉
denotes the affine function 3x+2 restricted to the interval [1,5]. We can now use the abstractions S
andF to build the abstract domain O.

Ordinal-Valued Functions. The elements of the abstract domain O belong toO,S×W where
W , {⊥W} ∪ {

∑
iω
i ·fi | fi ∈ F} ∪ {>W} is the set of ordinal-valued ranking functions of the

program variables (in addition to the function ⊥W representing potential non-termination, and the
function>W representing the lack of enough information to conclude1). More specifically, an abstract
function o ∈O is a pair of an abstract state s ∈ S and a polynomial in ω (i.e., an ordinal in Cantor
Normal Form)ωk ·fk+···+ω2 ·f2+ω ·f1+f0 where the coefficients f0,f1,f2,...,fk belong toF . Note
that the ordinal ωk ·fk+···+ω2 ·f2+ω ·f1+f0 is isomorphic to the lexicographic tuple (fk,...,f1,f0).
In fact, our abstract domain is isomorphic to the set of all lexicographic ranking functions with finite
(but unbounded) number of components. In the following, with abuse of notation, we use a map s 7→p
to denote the pair of s∈S and p∈W , i.e., p restricted to s. The abstract domain O is parameterized

1 In fact, our abstract domain is equipped with an approximation and a computational ordering (here not discussed)
which respectively do and do not distinguish between⊥W and>W. We refer to [11] for further discussion.
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by the choices of the abstraction 〈S,vS〉 and the type (e.g., affine, quadratic, cubic, exponential, . . . )
of natural-valued functions used as polynomial coefficients f0,f1,f2, ... ,fn ∈ F . As an example,
[1,5] 7→ω ·(3x+2)+(2x) uses intervals and affine functions respectively.

As for the operators of the abstract domain, we briefly describe only the join operator and the
assignment transfer function. We refer to [12] for more details and examples.

The join operator tO, given two abstract functions o1,s1 7→p1 and o2,s2 7→p2, determines the
function o,s 7→p, defined on their common domain s,s1uSs2 with value p,p1tPp2. Specifically,
the unification p1tPp2 of two polynomials p1 and p2 is done in ascending powers of ω, joining the
coefficients of similar terms (i.e., terms with the same power of ω). The join of two coefficients f1 and
f2 is provided by f,f1tFf2 and is defined as a natural-valued function (of the same type of f1 and f2)
greater than f1 and f2 (on the domain s). Whenever such function does not exist, we force f to equal 0
and we carry 1 to the unification of terms with next higher degree. Intuitively, whenever natural-valued
functions are not sufficient, we naturally resort to ordinals. Let us consider the join ωk ·f of two terms
ωk ·f1 andωk ·f2. Forcing f to equal 0 and carrying 1 to the terms with next higher degree is exactly the
same as considering f equal toω: ωk ·f=ωk ·ω=ωk+1 ·1+ωk ·0=ωk+1. To avoid computing infinite
increasing chains of abstract functions, to analyze loops we use a widening operator [1] OO which is
similar to the jointO but defaults to>P when the abstract function has increased between iterates.

In order to handle assignments, the abstract domain is equipped with an operation to substitute an
arithmetic expression for a variable within a function f ∈F . Given an abstract function o,s 7→p, an
assignment is carried out independently on the abstract state s and on the polynomial p. In particular, an
assignment on p is performed in ascending powers ofω, possibly carrying 1 to the term with next higher
degree. The need for carrying might occur in case of non-deterministic assignments: it is necessary
to take into account all possible outcomes of the assignment, possibly using ω as approximation.

3 Piecewise-Defined Ordinal-Valued Ranking Functions

In the following, we lift the abstract domain O to piecewise-defined ranking functions [11].
The elements of the abstract domain belong to V,P(S×W). More specifically, an element v∈V

of the abstract domain has now the form:

v,





s1 7→p1
...

sk 7→pk
where the abstract states s1,...,sk∈S induce a partition of the space of environments E and p1,...,pk
are ranking functions represented as polynomials ωk ·fk+···+ω2 ·f2+ω ·f1+f0 whose coefficients
f0,f1,f2,...,fn∈F are natural-valued functions of the program variables.

The binary operators of the abstract domain rely on a partition unification algorithm that, given two
piecewise-defined ranking functions v1 and v2, modifies the partitions on which they are defined into
a common refined partition of the space of program environments. For example, in case of partitions de-
termined by intervals with constant bounds, the unification simply introduces new bounds consequently
splitting intervals in both partitions. Then, the binary operators are applied piecewise: the piecewise
jointV computes the piecewise-defined natural-valued ranking function greater than v1 and v2 using
tO. The piecewise widening OV keeps only the partition of the domain of the first function. In this
way, it prevents the number of pieces of an abstract function from growing indefinitely. It also prevents
the indefinite growth of the value of an abstract function by using OO.

The unary operators for assignments and tests are also applied piecewise. In particular, assignments
are carried out independently on each abstract state and each ranking function. Then, the resulting
covering induced by the over-approximated abstract states is refined (joining overlapping pieces) to
obtain once again a partition.

The operators of the abstract domain are combined together to compute an abstract ranking function
for a program, through backward invariance analysis. The starting point is the constant function equal
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4 Ordinal-Valued Ranking Functions

int : x1, x2
while ( x1 6=0 ∧ x2≥0 ) do

if ( x1 >0 ) then
if ( ? ) then

x1 := x1 - 1
x2 := [−∞,∞]

else
x2 := x2 - 1

else /* x1 <0 */
if ( ? ) then

x1 := x1 + 1
else

x2 := x2 - 1
x1 := [−∞,∞]

Figure 1 Program with no
lexicographic ranking function.

int : x, b
x := 0, b := 1
[ while ( b > 0 ) do x := x + 1 ] ||
[ b := 0 ]

int : x, b, z1, z2
z1 := [0,+∞], z2 := [0,+∞], x := 0, b := 1
while ( b > 0 ) do

if ( z1≤z2 ) then
x := x + 1
z1 := [0,+∞]
z2 := z2 - 1

else
b := 0

Figure 2 Concurrent variant (above) and non-deterministic
variant (below) of Dijkstra’s random number generator [5].

to 0 at the program final control point. The ranking function is then propagated backwards towards
the program initial control point taking assignments and tests into account using join and widening
for loops. As a consequence of the soundness of all abstract operators (see [11]), we can establish the
soundness of the analysis for proving program termination: the program states for which the analysis
finds a ranking function are states from which the program indeed terminates.

Implementation. We have incorporated the implementation of the abstract domain O of ordinal-
valued ranking functions into our prototype static analyzer [10] based on piecewise-defined ranking
functions. The prototype accepts programs written in (a subset of) C. It is written in OCaml and, at
the time of writing, the available abstractions for program environments S are based on intervals [1],
octagons [9] or convex polyhedra [4], and the available abstraction for natural-valued functionsF is
based on affine functions. The operators for the intervals, octagons and convex polyhedra abstract
domains are provided by the APRON library [8]. The analysis proceeds by structural induction on the
program syntax, iterating loops until an abstract fixpoint is reached. In case of nested loops, a fixpoint
on the inner loop is computed for each iteration of the outer loop.

I Example 1. Let us consider the program in Figure 1. The variables x1 and x2 can have any initial
integer value, and the program behaves differently depending on whether x1 is positive or negative.
In case x1 is positive, the program either decrements the value of x2 or decrements the value of x1
and resets x2 to any value. In case x1 is negative, the program either increments the value of x1 or
decrements the value of x2 and resets x1 to any value (possibly positive). The loop exits when x1 is
equal to zero or x2 is less than zero.

Note that there does not exist a lexicographic affine ranking function for the loop. In fact, the variables
x1 and x2 can be alternatively reset to any value at each loop iteration: the value of x2 is reset in the
first branch of the first if statement (i.e., if x1>0) while the value of x1 is reset in the second branch
of the first if statement (i.e., if x1<0).

Nonetheless, the program always terminates, regardless of the initial values for x1 and x2, and
regardless of the non-deterministic choices taken during execution. Our prototype is able to prove the
program terminating in about 10 seconds (with a widening delay of 3 iterations). We automatically
infer the following piecewise-defined ranking function (at loop entry):

f(x1,x2)=





ω2+ω ·(x2−1)−4x1+9x2−2 x1<0 ∧ x2>0
1 x1 =0 ∨ x2≤0
ω ·(x1−1)+9x1+4x2−7 x1>0 ∧ x2>0
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Note that, from any state where x1<0 and x2 =k2>0, whenever the value of x1 is reset, it is possible
to jump to any state where x2 =k2−1. Thus, f must go up to ω2 (... and beyond!) as it is possible to
jump through unbounded non-determinism to states with value of the most precise ranking function
equal to an arbitrary ordinal between ω and ω2.

Finally, note the expressions identified as coefficients of ω: when x1<0, the coefficient of ω is an
expression in x2 (since x2 guides the progress towards the final states), and when x1>0, the coefficient
of ω is an expression in x1 (because x1 now rules the progress towards termination). The expressions
are automatically inferred by the analysis without requiring assistance from the user. J

4 Conclusion and Future Work

In this paper, we proposed a parameterized abstract domain for proving termination of imperative pro-
grams. The domain automatically infers sufficient conditions for program termination, and synthesizes
piecewise-defined ordinal-valued ranking functions through backward invariance analysis.

The full version of this short paper has been published in [12]. Due to space constraints, we refer
to [11, 12] for a comparison with related work.

It remains for future work to extend our research to proving termination under fairness constraints
and thus proving liveness properties of (sequential and) concurrent programs. However, as shown in
the following example, handling ordinals already allows us to take a first step in this direction.

I Example 2. Let us consider the concurrent variant of Dijkstra’s random number generator [5] in
Figure 2. The program is terminating under fairness assumptions. Nonetheless, a program transfor-
mation can be applied in order to introduce unbounded non-determinism and thus explicitly represent
the fair scheduler within the program [7]. Once this transformation is carried out, the resulting non-
deterministic program (in Figure 2) can be proved terminating by our ordinal-valued ranking functions.

However, more abstractions are to be expected to handle all practical cases.
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Abstract
We report on an implementation of elementary interpretations for automatic termination proofs.

1 Introduction

Proving termination of rewrite systems by polynomial interpretations is well-studied. In this
work we go beyond polynomials by considering a subset of elementary functions including
exponentiation. The approach is motivated by Lescanne’s factorial example [3]

0 + x→ x 0 · x→ 0 fact(0)→ s(0)
s(x) + y → s(x+ y) s(x) · y → x · y + y fact(s(x))→ s(x) · fact(x)

x · (y + z)→ x · y + x · z

which does not admit a (direct) termination proof by polynomials. Consider the algebra A
with carrier N>1 and the interpretation functions 0A = 2, sA(x) = x+2, x+Ay = 2x+y+1,
x ·A y = 2xy, and factA(x) = 22x . They establish termination of the TRS, since for every
rule the term interpretation of the left-hand side is larger than that of the right-hand side,
i.e., for all x, y, z ∈ N>1:

x+ 5 > x 22x > 2 222
> 4

2x+ y + 5 > 2x+ y + 3 2x+2y > 2x+1y + y + 1 22x+2
> 2x+222x = 2x+2+2x

2x(2y + z + 1) > 2x+1y + 2xz + 1

In this note we show how to automate the search for such interpretation functions. In
particular one has to (a) find suitable coefficients for the interpretations, (b) evaluate the
term interpretations, and (c) compare two term interpretations. In the sequel we address
these issues in reverse order and also discuss the limitations of this approach.

2 Automation of Elementary Algebras

We assume familiarity with term rewriting [1]. For a set of function symbols F , a (well-
founded) algebra A = (A, {fA | f ∈ F}, >) consists of a carrier A, (a set of) interpretation
functions fA : A×· · ·×A→ A, and a well-founded order > on A. An interpretation function
fA is monotone if a > b implies fA(. . . , ai−1, a, ai+1, . . .) > fA(. . . , ai−1, b, ai+1, . . .). An
algebra is monotone if all its interpretation functions are monotone. A TRS R is compatible
with an algebra A if [α]A(`) > [α]A(r) for every ` → r ∈ R and assignment α. Here
[α]A(t) denotes the value resulting when interpreting the term t in the algebra A under the
assignment α. A TRS is terminating if and only if it is compatible with a well-founded
monotone algebra.

Inspired by the above example we use interpretation functions of the following shape:

I Definition 1. A fixed-base elementary interpretation function (FBI) of depth 0 is a linear
function f(x) =

∑
16i6n xifi + f0 and an FBI of depth d+ 1 has the shape

f(x) =
∑

16i6n
xifi + f0 + bf

′(x)
( ∑

16i6n
xif̂i + f̂0

)
(1)

90
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where f0, f1, . . . , fn, f̂0, f̂1, . . . , f̂n are natural numbers, f ′(x) is an FBI of depth d, and
b > 2 is a fixed natural number. We use the abbreviations ḟ(x) =

∑
16i6n xifi + f0 and

f̂(x) =
∑

16i6n xif̂i + f̂0. An FBI algebra has N>1 as carrier and FBIs as interpretation
functions for all function symbols in the signature.

We treat an FBI f(x) of depth 0 as
∑

16i6n xifi + f0 + b00 to avoid case distinctions.
Hence in the sequel we will use FBIs f(x) and g(x) of the shape (1).

The following recursive definition reduces the comparison of FBIs to the comparison of
non-linear polynomials.

I Definition 2. Let bbf ′(x)c =
(
(ḟ ′(x) + f̂ ′(x) = 0) ? 1 : b (ḟ ′(x) + f̂ ′(x))

)
. Note that

bf(x) > bbf(x)c. Further let p(x) = ḟ ′(x)+f̂ ′(x)−ġ′(x)−ĝ′(x) and h(x) = bbp(x)cf̂(x)−ĝ(x).
We define

[f(x) > g(x)] = (ĝ(x) > 0→ [f ′(x) > g′(x)]) ∧
(

(f̂(x) > 0 ∧ [f ′(x) b > g(x)]) ∨ (d)
(ḟ(x) > ġ(x) ∧ f̂(x) > ĝ(x) ∧

((f̂(x) > 0 ∧ [f ′(x) > g′(x)]) ∨ ḟ(x) > ġ(x) ∨ f̂(x) > ĝ(x))) ∨ (e)
(h(x) > 0 ∧ p(x) > 0 ∧ f̂ ′(x) > ĝ′(x) ∧

ḟ(x) + bbg′(x)cbbp(x)cf̂(x) > ġ(x) + bbg′(x)cĝ(x))
)

(f)

The encodings of comparisons are sound.

I Lemma 3. If [f(x) > g(x)] holds then [α](f(x)) > [α](g(x)) for all assignments α.

The following example shows that FBIs are not closed under addition and composition,
which complicates the evaluation of a term interpretation.

I Example 4. The sum 2x+2y of the FBIs 2x and 2y has no FBI representation. Substituting
the FBI 2y + 1 for x in the FBI 2xx results in 22y+1(2y + 1) = 22y+y+1 + 22y+1, which also
has no equivalent FBI representation.

We thus define under- and overapproximations for arithmetic operations.

I Definition 5.
(a) Multiplication of an FBI by a scalar again yields an FBI, i.e.

f(x) a =
∑

16i6n
xifia+ f0a+ bf

′(x)
( ∑

16i6n
xif̂ia+ f̂0a

)

(b) For addition, we first introduce fmin(f, g) and fmax(f, g) as the coefficient-wise minimum
and maximum of FBIs f and g, respectively. These lower (upper) bounds admit the
approximations

f(x) +µ g(x) =
∑

16i6n
xi(fi + gi) + (f0 + g0) + beµ(x)

( ∑

16i6n
xi(f̂i + ĝi) + (f̂0 + ĝ0)

)

f(x) +ν g(x) =
∑

16i6n
xi(fi + gi) + (f0 + g0) + beν(x)

( ∑

16i6n
xi(f̂i + ĝi) + (f̂0 + ĝ0)

)

with eµ(x) abbreviating f̂(x) = 0 ? g′(x) :
(
ĝ(x) = 0 ? f ′(x) : fmin(f ′, g′)(x)

)
and eν(x)

abbreviating f̂(x) = 0 ? g′(x) :
(
ĝ(x) = 0 ? f ′(x) : fmax(f ′, g′)(x)

)
.
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(c) To approximate multiplication of an expression of the form bg
′(x) with f(x) by an FBI,

we may use

bg
′(x) ·µ f(x) = f̂(x) > 0 ? ḟ(x) + bf

′(x)+µg′(x)f̂(x) : bg
′(x)ḟ(x)

bg
′(x) ·ν f(x) = f̂(x) > 0 ? bf

′(x)+νg′(x)
( ∑

16i6n
xi(f̂i + fi) + (f̂0 + f0)

)
: bg

′(x)ḟ(x)

(d) Finally we can give approximations for the composition f(g)(x) = f(g1(x), . . . , gn(x)):

f(g)µ(x) =
µ∑

16i6n
gi(x)fi +µ f0 +µ b

f ′(g)µ(x) ·µ
( µ∑

16i6n
gi(x)f̂i +µ f̂0

)

The overapproximation f(g)ν(x) is obtained by replacing µ by ν in the above expression.
(e) Let t be a term and A an FBI algebra. We define FBIs µA(t) and νA(t) such that

µA(t) = t if t ∈ V and µA(t) = fA(µA(t1), . . . , µA(tn))µ if t = f(t1, . . . , tn). The
overapproximation νA(t) is defined similarly.

Definition 5 yields valid over- and underapproximations.

I Lemma 6. If A is an FBI algebra and t a term then [α](µA(t)) 6 [α]A(t) 6 [α](νA(t))
for all assignments α.

The following example illustrates Definition 5.

I Example 7. We consider the cases for addition and multiplication.
(b) We have fmin(x + 1, x) = x and fmax(x + 1, x) = x + 1, thus 2x+1y +µ 2x(z + 1) =

2x(y + z + 1) but 2x+1y +ν 2x(z + 1) = 2x+1(y + z + 1).
In certain pathological cases the approximations of addition are not commutative. To
be more precise, the resulting FBIs may be syntactically different but denote the same
elementary function. For instance, 2x · 0 +µ 2x+1 · 0 = 2x+1 · 0 while 2x+1 · 0 +µ 2x · 0 =
2x · 0. Still, we do not regard this a problem for our application as the encoding of
comparisons takes these cases into account.

(c) For multiplication we have 2x+1 ·µ22x = 2(x+1)+µ2x = 2x+1+2x and 2x+1 ·ν 22x = 2x+1+2x ,
the approximation is thus precise in these cases. On the other hand, as (x+ 1) +µ 2x =
(x + 1) +ν 2x = x + 1 + 2x we have 2x+1 ·µ (z + 1 + 22xy) = z + 1 + 2x+1+2xy, while
2x+1 ·ν (z + 1 + 22xy) = 2x+1+2x(y + z + 1).

The following example shows that in practice our approximations are very accurate, i.e.,
for the motivating example they are exact, i.e., we get the following constraints

x+ 5 > x 22x > 2 222
> 4

2x+ y + 5 > 2x+ y + 3 2x+2y > y + 1 + 2x2y 22x+2
> 2x+2+2x

2x(2y + z + 1) > 1 + 2x(2y + z)

Monotonicity of an FBI f(x) is expressed by mon(f(x)) =
∧

16i6nmoni(f(x)) where
moni(f(x)) = fi > 0 ∨ f̂i > 0 ∨ (moni(f ′(x)) ∧ f̂(x) > 0) . An FBI f(x) is well-defined if
[f(x) > 0] holds. The main result of this section can now be stated as follows.

I Theorem 8. Let R be a TRS over a signature F and A be an FBI algebra on F . If
∧

`→r∈R
[µA(`) > νA(r)] ∧

∧

f∈F

(
[fA(x) > 0] ∧mon(fA(x))

)

holds then R is terminating.
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4 Automating Elementary Interpretations

method YES avg. time Lescanne’s Example [4, Example 1.1] [3, Fig. 1]
poly 125 0.3 (0.2) (0.4) (0.3)
fbi 41 29.7 1443.4 731.0 13540.5
fbi[d] 170 4.7 16.1 10.0 27.8
fbi[d+] 174 4.2 8.9 7.9 24.1

Table 1 Experimental Results for FBI Algebras.

Finally we address the remaining problem of finding suitable coefficients. To this end
we fix the depth of the FBIs used for interpreting function symbols by some heuristics and
consider f0, . . . , fn, f̂0, . . . , f̂n in (1) as unknowns in the natural numbers. The encodings
from before then reduce the search for coefficients to finding models in the SMT logic
QF_NIA, i.e., existentially quantified non-linear integer arithmetic, for which tools exist.

3 Limitations

There are TRSs where FBI termination proofs require interpretations of arbitrary depth.

I Example 9. Let Rn for n > 0 consist of the rules

x+ 0→ x x+ s(y)→ s(x+ y) exp0(x)→ x

expi+1(0)→ expi(s(0)) expi+1(s(x))→ expi(exp1(x) + exp1(x))

for all 0 6 i < n. Termination of Rn can be shown by the FBI algebra A with base b = 2 and
interpretations 0A = 1, sA(x) = x+ 1, x+A y = x+ 2y, and expi,A(x) = expi2(2x+ 1) where
expi2(x) denotes i-fold exponentiation with base 2, i.e., exp0

2(x) = x and expi+1
2 (x) = 2expi2(x).

It is easy to see that any FBI algebra that orients Rn needs to have at least depth n.

It can be shown that already R1 admits multiple exponential complexity. As to be
expected, actually any TRS compatible with an FBI algebra is bounded by a multiple
exponential function. A more precise upper bound is given by the following lemma.

I Lemma 10. For any TRS R compatible with an FBI algebra A having base b and maximal
depth d− 1, dhR(n) ∈ expdnb (O(n)).

4 Experimental Results

We implemented FBIs in the termination tool TTT2 [2] version 1.15. For experiments1 we
considered the 1463 TRSs in the Standard TRS category of the Termination Problems Data
Base (TPDB 8.0.7)2 and examples from the dedicated literature. If a TRS could not be
handled within 60 seconds, the execution of TTT2 was aborted.

Table 1 compares the power of FBIs (of depth at most 2) with linear polynomial inter-
pretations when used in direct termination proofs (orient all rules by a single interpretation).
For numbers in parentheses TTT2 was not successful. The expressions in brackets indicate
which heuristics have been used. FBIs as well as linear interpretations use two bits to encode
coefficients and seven bits for arithmetic evaluations.

1 Details available from http://cl-informatik.uibk.ac.at/ttt2/ordinals
2 Available from http://termcomp.uibk.ac.at.

93



REFERENCES 5

Our experiments show the need for the heuristic limiting the depth of the FBIs (setting
[d] in Table 1). We have also experimented with other heuristics [d+] but they are much
less effective, i.e., they either slightly decrease the execution time or increase the number of
systems shown terminating but are not explained here. The systems where FBIs succeed
but linear polynomials fail often require interpretation functions of non-linear shape.

5 Related Work

Lescanne proposed elementary functions for proving (AC-)termination but his implement-
ation is limited to checking the orientation of rules for given interpretations [3]. Lucas has
achieved partial progress by considering so-called linear elementary interpretations (LEIs)
of the shape A(x) + B(x)C(x) where A(x), B(x), and C(x) are linear polynomials [4]. He
proposes an approach based on rewriting, constraint logic programming (CLP), and con-
straint satisfaction problems (CSPs) to also find suitable interpretation functions but leaves
an actual implementation of his method as future work.

6 Conclusion

Our findings are related to Problem #28 in the RTA List of Open Problems,3 which asks
to “develop effective methods to decide whether a system decreases with respect to some
exponential interpretation”. In addition our contribution admits the search for suitable
interpretations.

Generalizing elementary interpretations to a non-fixed base is an obvious choice for future
work. However, we anticipate that suitable approximations will neither give further deep
insights nor significantly improve termination proving power and hence we propose a different
line of research, viz., the study how to employ them for AC termination.

Since non-linear polynomials give rise to an exponential size SMT encoding, such inter-
pretations are hardly used within termination tools. We anticipate that suitable approxim-
ations could improve the performance of these implementations.
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